Volume 13 Issue 2
Jun.  2020
Turn off MathJax
Article Contents
Hai-tao Chen, Wen-chuan Wang, Xiao-nan Chen, Lin Qiu. 2020: Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights. Water Science and Engineering, 13(2): 136-144. doi: 10.1016/j.wse.2020.06.005
Citation: Hai-tao Chen, Wen-chuan Wang, Xiao-nan Chen, Lin Qiu. 2020: Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights. Water Science and Engineering, 13(2): 136-144. doi: 10.1016/j.wse.2020.06.005

Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights

doi: 10.1016/j.wse.2020.06.005
Funds:  This work was supported by the Foundation of the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province (Grant No. 181RTSTHN009), and the Foundation of the Key Laboratory of Water Environment Simulation and Treatment in Henan Province (Grant No. 2017016).
More Information
  • Corresponding author: Wen-chuan Wang
  • Received Date: 2019-08-25
  • Rev Recd Date: 2020-02-01
  • Based on conventional particle swarm optimization (PSO), this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight (ARIW) strategy, referred to as the ARIW-PSO algorithm, to build a multi-objective optimization model for reservoir operation. Using the triangular probability density function, the inertia weight is randomly generated, and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution, which is suitable for global searches. In the evolution process, the inertia weight gradually decreases, which is beneficial to local searches. The performance of the ARIW-PSO algorithm was investigated with some classical test functions, and the results were compared with those of the genetic algorithm (GA), the conventional PSO, and other improved PSO methods. Then, the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China, including the Panjiakou Reservoir, Daheiting Reservoir, and Taolinkou Reservoir. The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.


  • loading
  • Bai, T., Wu, L.Z., Chang, J.X., Huang, Q., 2015. Multi-objective optimal operation model of cascade reservoirs and its application on water and sediment regulation. Water Resources Management  29(3), 2751-2770. https://doi.org/10.1007/s11269-015-0968-0.
    Chang, L.C., 2008. Guiding rational reservoir flood operation using penalty-type genetic algorithm. Journal of Hydrology 354(1-4), 65-74. https://doi.org/10.1016/j.jhydrol.2008.02.021.
    Chang, L.C., Chang, F.J., 2009. Multi-objective evolutionary algorithm for operating parallel reservoir system. Journal of Hydrology. 377(1-2), 12-20. https:// doi.org/10.1061/j.jhydrol.2009.07.061.
    Chang, L.C., Chang, F.J., Wang, K.W., Dai, S.Y., 2010. Constrained genetic algorithms for optimizing multi-use reservoir operation. Journal of Hydrology 390(1-2), 66-74. https://doi.org/10.1016/j.jhydrol.2010.06.031.
    Chang, J.X., Bai, T., Huang, Q., Yang, D.W., 2013. Optimization of water resources utilization by PSO-GA. Water Resources Management 27(4), 3525-3540. https://doi.org/10.1007/s11269-013-0362-8.
    Chaves, P., Chang, L.C., 2008. Intelligent reservoir operation system based on evolving neural networks. Advances in Water Resources 31(6), 926-936. https://doi.org/10.1016/j.advwatres.2008.03.002.
    Chen, X.N., Duan, C.Q., Qiu, L., Huang, Q., 2008. Application of large scale system model base on particle swarm optimization to optimal allocation of water resources in irrigation areas. Transactions of the CSAE. 24 (3), 103-106 (in Chinese). 
    Cheng, C.T., Wang, W.C., Wu, X.Y., Xu, D.M., Chau, K.W., 2008. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resources Managment 22 (7), 895-909. https://doi.org/10.1007/s11269-007-9200-1.
    Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 26(1), 29-41. https://doi.org/10.1109/3477.484436.
    Eberhart, D.E., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the 6th Symposium on Micro Machine and Human Science. IEEE Service Center, Piscataway.
    Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wiley, Reading.
    Hadka, D., Reed, P., 2013. Borg: An auto-adaptive many-objective evolutionary computing framework. Evolutionary Computation 21(2), 231-259. https://doi.org/10.1162/EVCO_a_00075.
    Huang, W.C., Yuan, L.C., 2004. A drought early warning system on real-time multi-reservoir operation. Water Resources Research 40(6), W06401. https://doi.org/10.1029/2003WR002910.
    Jothiprakash, V., Arunkumar, R., 2013. Optimization of hydropower reservoir using evolutionary algorithms coupled with chaos. Water Resources Management 27(7), 1963-1979. https://doi.org/10.1007/s11269-013-0265-8.
    Kang, L., Zhou, L.W., Li, Z.H., Hui, L.Y., 2019. Nonlinear safety degree flood control strategy of multi-reservoirs in upper Yangtze River. Advances in Science and Technology of Water Resources 39(3), 1-5 (in Chinese). https://doi.org/10.3880/j.issn.1006-7647.2019.03.001.
    Kong, A.L., Liang, S., Li, C.L., Liang, Z.F., Chen, Y., 2017. Optimizing micro-grid operation based on improved PSO. Journal of Hohai University (Natural Sciences) 45(6), 550-555 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2017.06.012.
    Kumar, D.N., Reddy, M.J., 2007. Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management. 133(3), 192-201. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:3(192).
    Labadie, J.W., 2004. Optimal operation of multi-reservoir systems: State-of-the art-review. Journal of Water Resources Planning and Management 130(2), 93-111.
    Li, F.F., Christine, A.S., Qiu, J., Wei, J.H., 2015. Hierarchical multi-reservoir optimization modeling for real-world complexity with application to the Three Gorges system. Environmental  Modeling & Software. 69, 319-329. https://doi.org/10.1016/j.envsoft.2014.11.030.
    Liu, P., Cai, X.M., Guo, S.L., 2011. Deriving multiple near-optimal solutions to deterministic reservoir operation problems. Water Resources Research 47, W08506. https://doi.org/10.1029/2011WR010998.
    Ma, C.H., Li, Y., Huang, Q., Li, F., 2018. Parallel particle swarm optimization algorithm based on Spark multi-objective optimal scheduling of reservoir group. Journal of Xi’an University of Technology 34(3), 309-313 (in Chinese). https://doi.org/10.19322/j.cnki.issn.1006-4710.2018.03.010.
    Mao, J.Q., Tian, M.M., Hu, T.F., Ji, K., Dai, L.Q., Dai, H.C., 2019. Shuffled complex evolution coupled with stochastic ranking for reservoir scheduling problems. Water Science and Engineering 12(4), 307-318. https://doi.org/10.1016/j.wse.2019.12.003.
    Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Advances in Engineering Software 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
    Oliveira, R., Loucks, D.P., 1997. Operating rules for multi-reservoir systems. Water Resources Research 33(4), 839-852. https://doi.org/10.1029/96WR03745.
    Peng, Y., Xue, Z.C., 2011. Generalized ant colony optimization method for optimal operation of cascade reservoirs. Water Resources and Power 29(4), 48-50 (in Chinese).
    Salazar, J.Z., Reed, P.M., Quinn, J.D., Giuliani, M., Castelletti, A., 2017. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization. Advances in Water Resources 109, 196-210. https://doi.org/10.1016/j.advwatres.2017.09.014.
    Shi, Y., Eberhart, R.C., 1998. A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computatio. IEEE Press, pp. 69-73. https://doi.org/10.1109/ICEC.1998.699146.
    Vrugt, J.A., Robinson, B.A., Hyman, J.M., 2009. Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Transactions on Evolutionary Computation 13(2), 243-259. https://doi.org/10.1109/TEVC.2008.924428.
    Wardlaw, R, Sharif, M., 1999. Evaluation of genetic algorithms for optimal reservoir system operation. Journal of Water Resources Planning and Management  125(1), 25-33. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:1(25).
    Xu, G., Ma, G.W., Liang, W.H., Chen, J.C., Wu S.Y., 2005. Application of ant colony algorithm to reservoir optimal operation. Advanced in Water Science 16(3), 397-400 (in Chinese).
    Yang, G., Guo, S.L., Li, L.P., Hong, X.J., Wang, L., 2016a. Multi-objective operating rules for Danjiangkou Reservoir under climate change. Water Resources Management 30, 1183-1202. https://doi.org/10.1007/s11269-015-1220-7.
    Yang, G., Guo, S.L., Liu, P., Li, L.P., Liu, Z.J., 2016b. PA-DDS algorithm for multi-objective reservoir operation. Journal of Hydraulic Engineering 47, 789-797 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.20150773.
    Yeh, W.W.G., 1985. Reservoir management and operations models: A state-of-the-art review. Water Resources Research 21(12), 1797-1818. https://doi.org/10.1029/WR021i012p01797.
    Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.H., 2009. Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39(6),1362-1380. https://doi.org/10.1109/TSMCB.2009.2015956.
    Zhang, Z.B., He, X.Y., Geng, S.M., Li, H., Zhang, D.W., Jiang, X.M., 2017. The application of improved particle swarm algorithm to reservoir operation optimization. Journal of China Institute of Water Resources and Hydropower Research 15(5), 338-345 (in Chinese).
    Zhao, J.S., Cai, X.M., Wang, Z.J., 2011. Optimality conditions for a two-stage reservoir operation problem. Water Resources Research 47(8), W08503. https://doi.org/10.1029/2010WR009971.
    Zhao, T.T.G., Zhao, J.S., 2014. Improved multiple-objective dynamic programming model for reservoir operation optimization. Journal of Hydroinformatics. 16(5), 1142-1157. https://doi.org/10.2166/hydro.2014.004.
    Zheng J., Yang, K., Ni, F.Q., Liu, G.S., 2013. Research on overall improved genetic algorithm applied in optimal operation. Journal of Hydraulic Engineering 44(2), 205-211 (in Chinese). 
    Zhu, D.G., Sun, H., Zhao, J., Yu, Q., 2014. Particle swarm optimization algorithm based on Gaussian disturbance. Journal of Computer Applications 34(3), 754-759 (in Chinese). https://doi.org/10.11772/j.issn.1001-9081.2014.03.0754.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (403) PDF downloads(425) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint