Volume 13 Issue 3
Sep.  2020
Turn off MathJax
Article Contents
Muibat Diekola Yahya, Kehinde Shola Obayomi, Mohammed Bello Abdulkadir, Yahaya Ahmed Iyaka, Adeola Grace Olugbenga. 2020: Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Science and Engineering, 13(3): 202-213. doi: 10.1016/j.wse.2020.09.007
Citation: Muibat Diekola Yahya, Kehinde Shola Obayomi, Mohammed Bello Abdulkadir, Yahaya Ahmed Iyaka, Adeola Grace Olugbenga. 2020: Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Science and Engineering, 13(3): 202-213. doi: 10.1016/j.wse.2020.09.007

Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium

doi: 10.1016/j.wse.2020.09.007
More Information
  • Corresponding author: Kehinde Shola Obayomi
  • Received Date: 2020-02-13
  • Rev Recd Date: 2020-07-20
  • In this experiment, cobalt ferrite-supported activated carbon (CF-AC) was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II) ions from tannery wastewater. Batch adsorption was carried out to evaluate the effect of experimental operating conditions (pH of solution, contact time, adsorbent dose, and temperature), and the removal efficiencies of Cr and Pb(II) ions by the developed adsorbents were calculated and recorded for all experimental conditions. These variables were estimated and reported as removal efficiencies of 98.2% for Cr and 96.4% for Pb(II) ions at the optimal conditions of 5, 0.8 g, 80 min, and 333 K for pH, adsorbent dose, contact time, and temperature, respectively. The equilibrium for the sorption of Cr and Pb(II) ions was studied using four widely used isotherm models (the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models). It was found that the Freundlich isotherm model fit better with the coefficient of determination (R2) of 0.948 4 and a small sum of square error of 0.000 6. The maximum adsorption capacities (Qm) of Pb(II) and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g, respectively. The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals. The thermodynamic parameters showed that adsorption of Cr and Pb(II) ions onto CF-AC was spontaneous, feasible, and endothermic under the studied conditions. The mean adsorption energy (E) values revealed that the adsorption mechanism of Cr and Pb(II) by CF-AC is physical in nature. The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent, for removal of Cr and Pb(II) ions in tannery wastewater.

     

  • loading
  • Ahalya, N., Ramachandra, T.V., Kanamadi, R., 2003. Biosorption of heavy metals. Research Journal of Chemistry and Environment. 7(4), 71-79.
    Albakri, M.A., Abdelnaby, M.M., Saleh, T.A., Al Hamouz, O.C.S., 2018. New series of benzene-1,3,5-triamine based cross-linked polyamines and polyamine/CNT composites for lead ion removal from aqueous solutions. Chemical Engineering Journal. 333, 76-84. https://doi.org/10.1016/j.cej.2017.09.152.
    Ali, I.H., Al Mesfer, M.K., Khan, M.I., Danish, M., Alghamdi, M.M., 2019. Exploring adsorption process of lead(II) and chromium(VI) ions from aqueous solutions on acid activated carbon prepared from Juniperus procera leaves. Processes. 7(4), 217. https://doi.org/10.3390/pr7040217.
    Ali, R.M., Hamada, H.A., Hussein, M.M., Malash, G.F., 2016. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering. 91, 317-332. https://doi.org/10.1016/j.ecoleng.2016.03.015.
    Amarasinghe, B.M.W.P.K., Williams, R.A., 2007. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering Journal. 132(1-2), 299-309. https://doi.org/10.1016/j.cej.2007.01.016.
    Bello, O.S., Adelaide, O.M., Abdul Hammed, M., Abdul Muiz Popoola, O., 2010. Kinetic and equilibrium studies of methylene blue removal from aqueous solution by adsorption on treated sawdust. Macedonian Journal of Chemistry and Chemical Engineering. 29(1), 77–85. https://doi.org/10.20450/mjcce.2010.181.
    Bhatnagar, A., Sillanpaa, M., Witek-Krowiak, A., 2015. Agricultural waste peels as versatile biomass for water purification: A review. Chemical Engineering Journal, 270, 244-271. https://doi.org/10.1016/j.cej.2015.01.135.
    Blanes, P.S., Bordoni, M.E., Gonzáleza, J.C., Garcíaa, S.I., Atriac, A.M., Sala, L.F., Bellú, S.E., 2016. Application of soyhull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. Journal of Environmental Chemical Engineering. 4(1), 516–526. https://doi.org/10.1016/j.jece.2015.12.008.
    Bouhamed, F., Elouear, Z., Bouzid, J., 2012. Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers. 43(5), 741–749. https://doi.org/10.1016/j.jtice.2012.02.011.
    Chukwu, U.J., John, E.P., Kalagbor, A.I., 2017. Adsorption of Cu2+ and Fe2+ from single metal ion solution using unmodified and formaldehyde modified kola-nut (Cola nitida) testa. OSR Journal of Applied Chemistry (IOSR-JAC). 10(12), 12-18. https://doi.org/10.9790/5736-1012011218.
    Coskun, R., Savci, S., Delibas, A., 2018. Adsorption properties of activated almond shells for methylene blue. Environmental Research and Technology. 1(2), 31-38.
    Cotica, L.F., Freitas, V.F., Silva, D.M., Honjoya, K., Honjoya, K., Santos, I.A., Fontanive, V.C.P., Khalil, N.M., Mainardes, R.M., Kioshima, E.S., et al., 2014. Thermal decomposition synthesis and assessment of effect on blood cells in vivo damages of cobalt ferrite nanoparticles. Journal of Nano Research. 28, 131-140. https://doi.org/10.4028/www.scientific.net/JNanoR.28.131.
    Cruz, D.R.S., Santos, B.T.J., Cunha, G.C., Romao, L.P.C., 2017. Green synthesis of a magnetic hybrid adsorbent (CoFe2O4/NOM): Removal of chromium from industrial effluent and evaluation of the catalytic potential of recovered chromium ions. Journal of Hazardous Materials. 334, 76-85.  https://doi.org/10.1016/j.jhazmat.2017.03.062.
    Czikkely, M., Neubauer, E., Fekete, I., Ymeri, P., Fogarassy, C., 2018. Review of heavy metal adsorption processes by several organic matters from wastewaters. Water. 10(10), 1377. https://doi.org/10.3390/w10101377.
    Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O., 2012. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry (IOSR-JAC). 3(1), 38-45. https://doi.org/10.9790/5736-0313845.
    Dawodu, F.A., Akpomie, G.K., Abuh, M.A., 2012. Batch sorption of lead(II) from aqueous stream by “Eluku” clay-equilibrium, kinetic and thermodynamic studies. International Journal of Multidisciplinary Science and Engineering. 3(10), 32-37.
    Demirbas, E., Kobya, M., Konukman, A.E.S., 2008. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. Journal of Hazardous Material. 154(1-3), 787-794. https://doi.org/10.1016/j.jhazmat.2007.10.094.
    Desta, M.B., 2013. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics. 6(1), 375830. https://doi.org/10.1155/2013/375830.
    Ekpete, O.A., Horsfall Jr., M., 2011. Preparation and characterization of activated carbon derived from fluted pumpkin stem waste (Telfairia occidentalis Hook F). Research Journal of Chemical Sciences. 1(3), 10-17.
    Emam, A.A., Ismail, L.F.M., AbdelKhalek, M.A., AzzaRezhan, 2016. Adsorption study of some heavy metal ions on modified kaolinite clay. International Journal of Advancement in Engineering Technology, Management and Applied Sciences (IJAETMAS). 3(7), 152-163.
    Haktan?r, C., Özbelge, H.O., B?çak, N., Y?lmaz, L., 2017. Removal of hexavalent chromium anions via polymer enhanced ultrafiltration using a fully ionized polyelectrolyte. Separation Science and Technology. 52(15), 2487-2497. https://doi.org/10.1080/01496395.2017.1343351.
    Hameed, B.H., Foo, K.Y., 2010. Insight into the modeling of adsorption isotherms system. Chemical Engineering Journal. 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013.
    Hamzat, W.A., Abdulkareem, A.S., Bankole, M.T., Tijani, J.O., Kovo, A.S., Abubakre, O.K., 2019. Adsorption studies on the treatment of battery wastewater by purified carbon nanotubes (P-CNTs) and polyethylene glycol carbon nanotubes (PEG-CNTs). Journal of Environmental Science and Health, Part A. 54(9), 827-839. https://doi.org/10.1080/10934529.2019.1596701.
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 735-742. https://doi.org/10.1016/S0032-9592(98)00112-5.
    Huang, D.D., Wang, G.C., Shi, Z.M., Li, Z.H., Kang, F., Liu, F., 2017. Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system. Journal of Cleaner Production. 165, 667-676. https://doi.org/10.1016/j.jclepro.2017.07.152.
    Joshi, S., Pokharel, B.P., 2014. Preparation and characterization of activated carbon from Lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide. Journal of the Institute of Engineering. 9(1), 79–88. https://doi.org/10.3126/jie.v9i1.10673.
    Kothai, P., Meena, A., Meenaloshini, E., Revathy, A., Kumar, N.V., 2019. Treatment of tannery effluent using groundnut shells. International Research Journal of Engineering and Technology. 6(3), 2395-0072.
    Kurian, M., Thankachan, S., Nair, D.S., Aswathy, E.K., Aswathy, B., Arathy, T., Binu Krishna, K.T., 2015. Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesized by wet chemical methods. Journal of Advanced Ceramics, 4(3), 199–205. https://doi.org/10.1007/s40145-015-0149-x.
    Lagergren, S., Svenska, S.K., 1898. On the theory of so-called adsorption of dissolved substances. The Royal Swedish Academy of Sciences Document. 24, 1–13.
    Lofrano, G., Meric, S., Zengin, G.E., Orhon, D., 2013. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science Total Environment. 461–462, 265–281. https://doi.org/10.1016/j.scitotenv.2013.05.004.
    Manjuladevi, M., Sri, O.M., 2017. Heavy metals removal from industrial wastewater by nano adsorbent prepared from cucumis melopeel activated carbon. Journal of Nano-medicine. 5(1), 00102. https://doi.org/10.15406/jnmr.2017.05.00102.
    Mierzwa-Hersztek, M., Gondek, K., Jewiarz, M., Dziedzic, K., 2019. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. Journal of Material Cycles and Waste Management. 21, 786–800. https://doi.org/10.1007/s10163-019-00832-6.
    Namasivayam, C., Kavitha, D., 2009. Removal of Congo red from water by adsorption on activated carbon prepared from coir pith, an agricultural waste. Dyes and Pigments, 54(1), 47-58. https://doi.org/10.1016/S0143-7208(02)00025-6.
    Nasseh, N., Taghavi, L., Barikbin, B., Harifi-Mood, A.R., 2016. The removal of Cr(VI) from aqueous solution by almond green hull waste material: Inetic and equilibrium studies. Journal of Water Reuse and Desalination. 7(4), 449-460. https://doi.org/10.2166/wrd.2016.047.
    Nethaji, S., Sivasamy, A., Mandal, A.B., 2013. Adsorption isotherms, kinetics and mechanisms for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. International Journal of Science Technology. 10, 231-242. https://doi.org/10.1007/s13762-012-0112-0.
    Nuhoglu, Y., Malkoc, E., 2009. Thermodynamic and kinetic studies for environmental friendly Ni(II) biosorption using waste pumice of olive oil. Journal of Bioresource Technology. 100(8), 2375-2380. https://doi.org/10.1016/j.biortech.2008.11.016.
    Obayomi, K.S., Auta, M., 2019. Development of microporous activated Aloji clay for adsorption of lead(II) from aqueous solution. Heliyon. 5(11), e02799. https://doi.org/10.1016/j.heliyon.2019.e02799.
    Obayomi, K.S., Bello, J.O., Nnoruka, J.S., Adediran, A.A., Olajide, P.O., 2019.  Development of low-cost bio-adsorbent from agricultural waste composite for Pb(II) and As(III) sorption from aqueous solution. Cogent Engineering. 6(1), 1687274.  https://doi.org/10.1080/23311916.2019.1687274.
    Obayomi, K.S., Auta, M., Kovo, A.S., 2020. Isotherm, kinetic and thermodynamics studies for adsorption of lead(II) onto modified Aloji clay. Desalination and Water Treatment. 181, 376-384. https://doi.org/10.5004/dwt.2020.25142.
    Padmavathy, K.S., Madhub, G., Haseena, P.V., 2016. A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr(VI)) from wastewater by magnetite nanoparticles.  Procedia Technology. 24, 585-594. https://doi.org/10.1016/j.protcy.2016.05.127.
    Panda, L., Das, B., Rao, D.S., Mishra, B.K., 2011. Application of Dolochar in the removal of cadmium and hexavalent chromium ions from aqueous solutions. Journal of Hazardous Materials. 192(2), 822–831. https://doi.org/10.1016/j.jhazmat.2011.05.098.
    Rostamian, R., Najafi, M., Rafati, A.A., 2011. Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: Kinetics, isotherms and error analysis. Chemical Engineering Journal. 171 (3), 1004–1011. https://doi.org/10.1016/j.cej.2011.04.051.
    Saranya, K., Thirumarimurugan, M., Manivasagan, V., 2016. Biosorption of hexavalent chromium from paint industrial effluent by Saraca indica leaves using with and without gel entrapment method. International Journal of Environment and Sustainable Development, 15(3), 219-226. https://doi.org/10.1504/IJESD.2016.077365.
    Sari, A., Tuzen, M., Soylak, M., 2007. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. Journal of Hazardous Material B. 144(1-2), 41-46. https://doi.org/10.1016/j.jhazmat.2006.09.080.
    Sharma, K.P., Ayub, S., Tripathi, C.N., 2013. Agro and horticultural wastes as low cost adsorbents for removal of heavy metal from wastewater: A review. International referred Journal of Engineering and science. 2(8), 18-27.
    Singh, D.K., Kumar, V., Mohan, S., Bano, D., Hasan, S.H., 2017. Breakthrough curve modeling of graphene oxide aerogel packed fixed bed column for the removal of Cr(VI) from water. Journal of Water Process Engineering. 18, 150-158. https://doi.org/10.1016/j.jwpe.2017.06.011.
    Singha, B., Das, S.K., 2011. Biosorption of Cr(VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies. Colloids and Surfaces B: Biointerfaces. 84(1), 221–232. https://doi.org/10.1016/j.colsurfb.2011.01.004.
    Song, M., Jin, B.S., Xiao, R., Yang, L., Wu, Y.M., Zhong, Z.P., Huang, Y.J., 2013. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass Bioenergy. 48, 250-256. https://doi.org/10.1016/j.biombioe.2012.11.007.
    Sonja, J., Ksenija, K., Danica, B.B., Bostjan, J., Matjaz, S., Tatjanai, T.P., Danilo, S., 2019. Cobalt ferrite nanospheres as a potential magnetic adsorbent for chromium (VI) ions. Journal of Nanoscience and Nanotechnology. 19(8), 5027–5034. https://doi.org/10.1166/jnn.2019.16803.
    Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., Mishra, I.M., 2010. Adsorptive Removal of Phenol by Bagasse fly ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics. Colloids and Surfaces A: Physicochemical Engineering Aspect. 272(1-2), 89-104. https://doi.org/10.1016/j.colsurfa.2005.07.016.
    Swathi, M., Sathya, S.A., Aravind, S., Ashi-Sudhakar, P.K., Gobinath, R., Saranya, D., 2014. Adsorption studies on tannery wastewater using rice husk. Scholars Journal of Engineering and Technology. 2(2B), 253-257. https://doi.org/10.36347/sjet.
    Taha, A., Moustafa, A.H.E., Abdel-Rahman, H., Abd-El-Hameed, M.A., 2018. Comparative biosorption study of Hg(II) using raw and chemically activated almond shell. Adsorption Science and Technology. 36(1–2) 521–548. https://doi.org/10.1177/0263617417705473.
    Vazquez-Olmos, A.R., Abatal, M., Sato-Berru, R.Y., Pedraza-Basulto, G.K., Garcia-Vazquez, V., Sainz-Vidal, A., Perez-Bañuelos, R., Quiroz, A., 2016. Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn) magnetic nanoparticles for Pb removal from aqueous solution. Journal of Nanomaterial. 2016, 9182024. https://doi.org/10.1155/2016/9182024.
    Veit, M.T., Tavares, C.R.G., Gomes-da-Costa, S.M., Guedes, T.A., 2005. Adsorption isotherms of copper(II) for two species of dead fungi biomass process.Biochemistry. 40(10), 3303-3308. https://doi.org/10.1016/j.procbio.2005.03.029.
    Wambu, E.W., Attahiru, S., Shiundu, P.M., Wabomba, J., 2018. Removal of heavy-metals from wastewater using a hydrous alumino-silicate mineral from Kenya. Bulletin of the Chemical Society of Ethiopia. 32(1), 39-51. https://doi.org/10.4314/bcse.v32i1.4.
    Yahya, M.D., Yohanna, I., Auta, M., Obayomi, K.S., 2020a. Remediation of Pb(II) ions from Kagara gold mining effluent using cotton hull adsorbent. Scientific African. 8, e00399. https://doi.org/10.1016/j.sciaf.2020.e00399.
    Yahya, M.D., Abubakar, H., Obayomi, K.S., Iyaka, Y.A., Suleiman, B., 2020b. Simultaneous and continuous biosorption of Cr and Cu(II) ions from industry tannery effluent using almond shell in a fixed bed column. Results in Engineering. 6, 100113. https://doi.org/10.1016/j.rineng.2020.100113. 
    Yahya, M.D., Aliyu, A.S., Obayomi, K.S., Olugbenga, A.G., Abdullahi, U.B., 2020c. Column adsorption study for the removal of chromium and manganese ions from electroplating water using cashew nutshell adsorbent. Cogent Engineering, 7(1), 1748470. https://doi.org/10.1080/23311916.2020.1748470.
    Yahya, N., Kashif, M., Nasir, N., Niaz Akhtar, M., Yusof, N.M., 2012. Cobalt Ferrite Nanoparticles: An Innovative Approach for Enhanced Oil Recovery Application. Journal of Nano Research. 17, 115-126. https://doi.org/10.4028/www.scientific.net/JNanoR.17.115.
    Yakubu, I.S., Muhammad, A.R., Lawan, U., 2018. Determination of heavy metals in tannery effluent. International Journal of Advanced Academic Research, Science, Technology and Research. 4(5), 132-134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (768) PDF downloads(545) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return