Volume 14 Issue 3
Sep.  2021
Turn off MathJax
Article Contents
Nicolás Diego Badano, Ángel Nicolás Menéndez. 2021: Numerical modeling of Reynolds scale effects for filling/emptying system of Panama Canal locks. Water Science and Engineering, 14(3): 237-245. doi: 10.1016/j.wse.2021.03.006
Citation: Nicolás Diego Badano, Ángel Nicolás Menéndez. 2021: Numerical modeling of Reynolds scale effects for filling/emptying system of Panama Canal locks. Water Science and Engineering, 14(3): 237-245. doi: 10.1016/j.wse.2021.03.006

Numerical modeling of Reynolds scale effects for filling/emptying system of Panama Canal locks

doi: 10.1016/j.wse.2021.03.006
  • Received Date: 2020-10-18
  • Accepted Date: 2021-03-27
  • Available Online: 2021-10-11
  • Significant scale effects have been detected on the filling/emptying time measured with a reduced-scale physical model of the Third Set of Locks of the Panama Canal. During the design phase, corrections were made to compensate for these effects. However, the measurements at the prototype scale indicated that the corrections were insufficient because they only accounted for the differences in skin friction. In this study, a general methodology was proposed to evaluate scale effects using three-dimensional numerical models. This methodology was validated and then applied to a portion of the filling/emptying system of the Panama Canal to quantify its scale effects. The results showed that this technique can consider all sources of scale effects that affect head losses, such as skin friction and flow separation, and thereby correctly simulate the filling/emptying time at the prototype scale. The proposed methodology for scale effect quantification can be used to correct the results of physical models, and it can be expected to improve estimation of the performance of prototypes.

     

  • loading
  • Ackers, P., 1987. Scale models: Examples of how, why and when-with some ifs and buts. In: Proceedings of Technical Session B, XXⅡ IAHR Congress. IAHR, Lausanne.
    American Society of Mechanical gineers (ASME), 2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer (ASME V&V 20-2009). ASME.
    Badano, N.D., Menéndez, A.N., 2020. Accuracy of boundary layer treatments at different Reynolds scales. Open Eng. 10(1), 295-310. https://doi.org/10.1515/eng-2020-0033.
    Caretto, L., Gosman, A., Pantakar, S., Spalding, D., 1972. Two calculation procedures for steady, three-dimensional flows with recirculation. In:Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Springer, Berlin, Heidelberg, pp. 60-68. https://doi.org/10.1007/BFb0112677.
    Castro-Orgaz, O., Hager, W.H., 2014. Scale effects of round-crested weir flow. J. Hydraul.Res.52(5),653-665.https://doi.org/10.1080/00221686.2014.910277.
    Colebrook, C.F., White, C.M., 1937. Experiments with fluid friction in roughened pipes. Proc. Math. Phys. Eng. Sci. 161(906), 367-381. https://doi.org/10.1098/rspa.1937.0150.
    Erpicum, S., Tullis, B.P., Lodomez, M., Archambeau, P., Dewals, B.J., Piroton, M., 2016. Scale effects in physical piano key weirs models. J. Hydraul. Res. 54(6), 692-698. https://doi.org/10.1080/00221686.2016.1211562.
    Heller,V.,2011.Scaleeffectsinphysicalhydraulicengineeringmodels.J.Hydraul. Res. 49(3), 293-306. https://doi.org/10.1080/00221686.2011.578914.
    Higuera, P., Losada, I.J., Lara, J.L., 2015. Three-dimensional numerical wave generation with moving boundaries. Coast. Eng. 101, 35-47. https://doi.org/10.1016/j.coastaleng.2015.04.003.
    International Organization for Standardization (ISO), 2003. Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full, Part 2: Orifice Plate (ISO 5167).
    Jasak, H., 1996. Error Analysis and Estimation for Finite Volume Method with Applications to Fluids Flow. Ph. D. Dissertation. Imperial College of Science, Technology and Medicine, London.
    Johnson, M.C., Savage, B.M., 2006. Physical and numerical comparison of flow over ogee spillway in the presence of tailwater. J. Hydraul. Eng. ASCE 132(12), 1353-1357. https://doi.org/10.1061/(ASCE)0733-9429(2006) 132:12(1353).
    Kalitzin, G., Medic, G., Iaccarino, G., Durbin, P., 2005. Near-wall behavior of RANS turbulence models and implications for wall functions. J. Comput. Phys. 204(1), 265-291. https://doi.org/10.1016/j.jcp.2004.10.018.
    Kim, D.G., Park, J.H., 2005. Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE J. Civil Eng. 9, 161-169. https://doi.org/10.1007/BF02829067.
    Kim, J., Yadav, M., Kim, S., 2014. Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow. Eng. Appl. Comput. Fluid Mech. 8(2), 229-239. https://doi.org/10.1080/19942060.2014.11015509.
    Menéndez, A.N., Badano, N.D., 2011. Interaction between hydraulic and numerical models for the design of hydraulic structures. Hydrodynamics:Optimizing Method Tool 225-244. https://doi.org/10.5772/28688.
    Menéndez, A.N., Badano, N.D., Lecertu á, E.A., 2013. A strategy for the interaction between hydraulic and numerical models. In: Proceedings of the 35th IAHR World Congress. IAHR, Chengdu.
    Menéndez, A.N., Lecertua, E.A., Badano, N.D., 2014. Optimización del diseño del sistema de llenado/vaciado del Tercer Juego de Esclusas del Canal de Panamá. RIBAGUA 1(1), 4-13 (in Spanish). https://doi.org/10.1016/S2386-3781(15)30003-7.
    Menter, F.R., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. In: Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer. Begell House, Antalya, pp. 625-632.
    Pfister, M., Battisacco, E., De Cesare, G., Scheleiss, A.J., 2013. Scale effects related to the rating curve of cylindrically crested piano key weirs. In:Proceedings of the 2nd International Workshop on Labyrinth and Piano Key Weirs. CRC Press, Boca Raton, pp. 73-82.
    Pope, S.B., 2000. Turbulent Flows. Cambridge University Press. https://doi.org/10.1017/CBO9780511840531.
    Reader-Harris, M.J., 1998. The equation for the expansibility factor for orifice plates. In: Proceedings of FLOMEKO, vol. 98. Lund, pp. 209-214.
    Rhie, C., Chow, W., 1983. Numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21(11), 1525-1532. https://doi.org/10.2514/3.8284.
    Roache, P.J., 1994. Perspective: A method for uniform reporting of frid refinement studies. J. Fluid Eng. 116(3), 405-413. https://doi.org/10.1115/1.2910291.
    Sutherland, J., Barfuss, S.L., 2011. Composite modelling: Combining physical and numerical models. In: Proceedings of the 34th IAHR World Congress. IAHR, Brisbane.
    Yalin, M., 1971. Theory of Hydraulic Models. Macmillan, London. https://doi.org/10.1007/978-1-349-00245-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return