Volume 17 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Yvelisse Pérez, Enmanuel Vargas, Daniel García-Cortés, William Hernández, Humberto Checo, Ulises Jáuregui-Haza. 2024: Efficiency and effectiveness of systems for the treatment of domestic wastewater based on subsurface flow constructed wetlands in Jarabacoa, Dominican Republic. Water Science and Engineering, 17(2): 118-128. doi: 10.1016/j.wse.2023.08.004
Citation: Yvelisse Pérez, Enmanuel Vargas, Daniel García-Cortés, William Hernández, Humberto Checo, Ulises Jáuregui-Haza. 2024: Efficiency and effectiveness of systems for the treatment of domestic wastewater based on subsurface flow constructed wetlands in Jarabacoa, Dominican Republic. Water Science and Engineering, 17(2): 118-128. doi: 10.1016/j.wse.2023.08.004

Efficiency and effectiveness of systems for the treatment of domestic wastewater based on subsurface flow constructed wetlands in Jarabacoa, Dominican Republic

doi: 10.1016/j.wse.2023.08.004
  • Received Date: 2023-03-01
  • Accepted Date: 2023-07-28
  • Available Online: 2024-05-14
  • Constructed wetlands (CW) are well known nature-based systems for water treatment. This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa, the Dominican Republic. The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand (BOD5) and chemical oxygen demand, but not for the removal of phosphorus and fecal coliforms. In addition, a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions. The concentrations of heavy metals, such as zinc, copper, chromium, and iron, were found to decrease in the effluent of the wetland, and the concentrations for nickel and manganese tended to increase. The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards. The construction cost of these facilities was around 200 USD per population equivalent, similar to the cost in other countries in the same region. This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen, use of endemic plants that bioaccumulate heavy metals, combination of constructed wetlands with filtration on activated carbon, and inclusion of water purification processes that allow to evaluate the reuse of treated water.


  • loading
  • Almuktar, S.A., Abed, S.N., Scholz, M., 2018. Wetlands for wastewater treatment and subsequent recycling of treated effluent:A review. Environ. Sci. Pollut. Control Ser. 25(24), 23595-23623. https://doi.org/10.1007/s11356-018-2629-3.
    Arroyo, P., Ansola, G., de Luis, E., 2010. Effectiveness of a full-scale constructed wetland for the removal of metals from domestic wastewater. Water, Air, Soil Pollut., 210(1-4), 473-481. https://doi.org/10.1007/s11270-009-0272-9.
    Arteaga-Cortez, V.M., Quevedo-Nolasco, A., del Valle-Paniagua, D.H., Castro-Popoca, M., Bravo-Vinaja, A., Ramirez-Zierold, J.A., 2019. State of art:A current review of the mechanisms that make the artificial wetlands for the removal of nitrogen and phosphorus. Tecnologia y Ciencias del Agua 10(5), 319-342. https://doi.org/10.24850/j-tyca-2019-05-12.
    Baird, R.B., Eaton, A.D., Rice, E.W., 2017. Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association, Washington DC.
    Baldovi, A.A., de Barros Aguiar, A.R., Benassi, R.F., Vymazal, J., de Jesus, T.A., 2021. Phosphorus removal in a pilot scale free water surface constructed wetland:Hydraulic retention time, seasonality and standing stock evaluation. Chemosphere 266, 128939. https://doi.org/10.1016/j.chemosphere.2020.128939.
    Batool, A., Saleh, A., 2019. Ecotoxicology and environmental safety removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicol. Environ. Saf. 189, 109924. https://doi.org/10.1016/j.ecoenv.2019.109924.
    Brisson, J., Chazarenc, F., 2009. Maximizing pollutant removal in constructed wetlands:Should we pay more attention to macrophyte species selection?Sci. Total Environ. 407(13), 3923-3930. https://doi.org/10.1016/j.scitotenv.2008.05.047.
    Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I., Vidal, G., 2017. Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading. Ecol. Eng. 99, 246-255. https://doi.org/10.1016/j.ecoleng.2016.11.058.
    Centeno Mora, E., Murillo Marín, A., 2019. Tipologia de las tecnologias de tratamiento de aguas residuales ordinarias instaladas en Costa Rica. Revista de Ciencias Ambientales 53(2), 97-110. https://doi.org/10.15359/rca.53-2.5.
    Centeno Mora, E., Murillo Marín, A., 2020. Comparacion de tecnologias para el tratamiento sostenible de aguas residuales ordinarias en pequeñas comunidades de Costa Rica:Demanda de área, costo constructivo y costo de operacion y mantenimiento. Ingenieria 30(1), 1-24. https://doi.org/10.15517/ri.v30i1.38898.
    Du Laing, G., Vanthuyne, D.R.J., Vandecasteele, B., Tack, F.M.G., Verloo, M.G., 2007. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environ. Pollut. 147(3), 615-625. https://doi.org/10.1016/j.envpol.2006.10.004.
    Duarte, A.A., Canais-Seco, T., Peres, J.A., Bentes, I., Pinto, J., 2010. Sustainability indicators of subsurface flow constructed wetlands in Portuguese small communities. WSEAS Trans. Environ. Dev. 6(9), 625-634.
    Freeman, A.I., Widdowson, S., Murphy, C., Cooper, D.J., 2019. Economic assessment of aerated constructed treatment wetlands using whole life costing. Water Sci. Technol. 80(1), 75-85. https://doi.org/10.2166/wst.2019.246.
    Garcia-Avila, F., Patino-Chavez, J., Zhinin-Chimbo, F., Donoso-Moscoso, S., Del Pino, F., L., Aviles-Anazco, A., 2019. Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. Int. Soil Water Conserv. Res. 7(3), 286-296. https://doi.org/10.1016/j.iswcr.2019.04.001.
    Grinberga, L., 2020. Water quality assurance with constructed wetlands in Latvia. In:Water Resources Quality and Management in Baltic Sea Countries, Springer Nature Switzerland AG, Cham, pp. 87-103.
    Hussain, M.I., Qureshi, A.S.J.E.S., 2020. Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environ. Sci. Pollut. Control Ser. 27, 11213-11226. https://doi.org/10.1007/s11356-019-07522-8.
    Jana, S., Kro, L., 2009. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ. Pollut. 157(4), 1186-1194. https://doi.org/10.1016/j.envpol.2008.12.003.
    Khalifa, M.E., El-Reash, Y.G.A., Ahmed, M.I., Rizk, F.W., 2020. Effect of media variation on the removal efficiency of pollutants from domestic wastewater in constructed wetland systems. Ecol. Eng. 143, 105668. https://doi.org/10.1016/j.ecoleng.2019.105668.
    Khan, Z.M., Kanwar, R.M.A., Farid, H.U., Sultan, M., Arsalan, M., Ahmad, M., Shakoor, M., Aslam, M.M.A. 2019. Wastewater evaluation for multan, Pakistan:Characterization and agricultural reuse. Pol. J. Environ. Stud. 28(4), 2159-2174. https://doi.org/10.15244/PJOES/90838.
    Kulshreshtha, N.M., Verma, V., Soti, A., Brighu, U., Gupta, A.B., 2022. Exploring the contribution of plant species in the performance of constructed wetlands for domestic wastewater treatment. Bioresour. Technol. Rep. 18, 101038. https://doi.org/10.1016/j.biteb.2022.101038.
    Li, J., Fan, J., Zhang, J., Hu, Z., Liang, S., 2018a. Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands. Environ. Sci. Pollut. Control Ser. 25(14), 13929-13937. https://doi.org/10.1007/s11356-018-1597-y.
    Li, X., Ding, A., Zheng, L., Anderson, B.C., Kong, L., Wu, A., Xing, L., 2018b. Relationship between design parameters and removal efficiency for constructed wetlands in China. Ecol. Eng., 123, 135-140. https://doi.org/10.1016/j.ecoleng.2018.08.005.
    Machado, A.I., Beretta, M., Fragoso, R., Duarte, E., 2017. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. J. Environ. Manag. 187, 560-570. https://doi.org/10.1016/j.jenvman.2016.11.015.
    Marín-Muniz, J.L., Hernandez, M.E., Gallegos-Pérez, M.P., Amaya-Tejeda, S.I., 2020. Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol. Eng. 147, 105658. https://doi.org/10.1016/j.ecoleng.2019.105658.
    Mello, D., Carvalho, K.Q., Passig, F.H., Freire, F.B., Borges, A.C., Lima, M.X., Marcelino, G.R., 2019. Nutrient and organic matter removal from low strength sewage treated with constructed wetlands. Environ. Technol. 40(1), 11-18. https://doi.org/10.1080/09593330.2017.1377291.
    Moya-Pons, F., Ledesma, R., de Jesus, I., Pérez-Sanchez, N., 2003. Norma Ambiental Sobre Calidad del Agua y Control de Descargas. Secretaria de Estado de Medio Ambiente y Recursos Naturales, Republica Dominicana.
    Nguyen, H.T.T., Chao, H.R., Chen, K.C., 2019. Treatment of organic matter and tetracycline in water by using constructed wetlands and photocatalysis. Appl. Sci. 9(13), 2680. https://doi.org/10.3390/app9132680.
    Nivala, J., Kahl, S., Boog, J., Afferden, M.V., Reemtsma, T., Muller, R.A., 2019. Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. Sci. Total Environ. 649, 1144-1156. https://doi.org/10.1016/j.scitotenv.2018.08.339.
    Norton-Brandao, D., Scherrenberg, S.M., Lier, J.B.V., 2013. Reclamation of used urban waters for irrigation purposes-a review of treatment technologies. J. Environ. Manag. 122, 85-98. https://doi.org/10.1016/j.jenvman.2013.03.012.
    Noyola, A., Padilla-Rivera, A., Morgan-Sagastume, J. M., Patricia Guereca, L., Hernandez-Padilla, F., 2012. Typology of municipal wastewater treatment technologies in Latin America. Clean:Soil, Air, Water 40(9), 926-932. https://doi.org/10.1002/clen.201100707.
    Pedescoll, A., Sidrach-Cardona, R., Hijosa-Valsero, M., Becares, E., 2015. Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment. Ecol. Eng. 80, 92-99. https://doi.org/10.1016/j.ecoleng.2014.10.035.
    Pérez-Salazar, R., Mora-Aparicio, C., Alfaro-Chinchilla, C., Sasa-Marín, J., Scholz, C., Rodriguez-Corrales, J.A., 2019. Biogardens as constructed wetlands in tropical climate:A case study in the central pacific coast of Costa Rica. Sci. Total Environ. 658, 1023-1028. https://doi.org/10.1016/j.scitotenv.2018.12.259.
    Pérez, Y.A., García-Cortés, D., Jauregui-Haza, U.J., 2022. Humedales construidos como alternativa de tratamiento de aguas residuales en zonas urbanas:Una revision. Ecosistemas 31(1), 2279-2279. https://doi.org/10.7818/ECOS.2279.
    Puigagut, J., Villaseñor, J., Salas, J.J., Becares, E., Garcia, J., 2007. Subsurface-flow constructed wetlands in Spain for the sanitation of small communities:A comparative study. Ecol. Eng. 30, 312-319. https://doi.org/10.1016/j.ecoleng.2007.04.005.
    Ramprasad, C., Smith, C.S., Memon, F.A., Philip, L., 2017. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland:GROW. Ecol. Eng. 106, 55-65. https://doi.org/10.1016/j.ecoleng.2017.05.022.
    Ross, S., 1989. Soil Processes. Routledge, New York.
    Rousso, B.Z., Pelissari, C., Santos, M.O.D., Sezerino, P.H., 2019. Hybrid constructed wetlands system with intermittent feeding applied for urban wastewater treatment in South Brazil. J. Water, Sanit. Hyg. Dev. 9(3), 559-570. https://doi.org/10.2166/washdev.2019.010/565279.
    Ruan, W., Cai, H., Xu, X., Man, Y., Wang, R., Tai, Y., Chen, Z., Vymazal, J., Chen, J., Yang, Y., et al., 2021. Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands:A field-scale study in a frost-free área. Sci. Total Environ., 799, 149301. https://doi.org/10.1016/j.scitotenv.2021.149301.
    Saeed, T., Khan, T., 2019. Constructed wetlands for industrial wastewater treatment:Alternative media, input biodegradation ratio and unstable loading. J. Environ. Chem. Eng. 7(2), 103042. https://doi.org/10.1016/j.jece.2019.103042.
    Sharma, R., Vymazal, J., Malaviya, P., 2021. Application of floating treatment wetlands for stormwater runoff:A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Sci. Total Environ. 777, 146044. https://doi.org/10.1016/j.scitotenv.2021.146044.
    Singh, M., Srivastava, R.K., 2016. Feasibility of using tuberose (P. tuberosa L.) in horizontal subsurface flow constructed wetland for heavy metal removal from domestic wastewater. Environ. Prog. Sustain. Energy 35(1), 125-132. https://doi.org/10.1002/ep.12214.
    Song, X., Ding, Y., Wang, Y., Wang, W., Wang, G., Zhou, B., 2015. Comparative study of nitrogen removal and bio-film clogging for three filter media packing strategies in vertical flow constructed wetlands. Ecol. Eng. 74, 1-7. https://doi.org/10.1016/j.ecoleng.2014.08.008.
    Stefanakis, A.I., 2020. Constructed wetlands:Description and benefits of an eco-tech water treatment system. In:Waste Management:Concepts, Methodologies, Tools, and Applications. IGI Publishing, Boston, pp. 503-525.
    Tanaka, N., Ng, W.J., Jinadasa, K., 2011. Wetlands for Tropical Applications:Wastewater Treatment by Constructed Wetlands. Imperial College Press, London.
    Tanner, C., 2001. Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci. Technol. 44(11-12), 9-17. https://doi.org/10.2166/wst.2001.0804.
    Tao, W., Sauba, K., Fattah, K.P., Smith, J.R., 2017. Designing constructed wetlands for reclamation of pretreated wastewater and stormwater. Rev. Environ. Sci. Biotechnol. 16(1), 37-57. https://doi.org/10.1007/s11157-016-9419-5.
    Temel, F.A., Avci, E., Ardali, Y., 2018. Full scale horizontal subsurface flow constructed wetlands to treat domestic wastewater by Juncus acutus and Cortaderia selloana. Int. J. Phytoremediation 20(3), 264-273. https://doi.org/10.1080/15226514.2017.1374336.
    Torres Bojorges, A.X., Hernandez Razo, N.A., Urquieta, F., Aseret, A., Zurita Martinez, F., 2017. Evaluacion de tres sistemas de humedales hibridos a escala piloto para la remocion de nitrogeno. Rev. Int. Contam. Ambient. 33(1), 37-47. https://doi.org/10.20937/RICA.2017.33.01.03.
    United Nations (UN), 2018. La Agenda 2030 y los Objetivos de Desarrollo Sostenible:Una Oportunidad para America Latina y el Caribe (LC/G.2681-P/Rev.3). UN, Santiago.
    Urania Abreu, R., 2016. Formulacion Estrategia Nacional de Saneamiento de Republica Dominicana. Instituto Nacional de Aguas Potables y Alcantarillados, Santo Domingo. http://www.inapa.gob.do/index.php/proyectos/category/56-estrategia-nacional-de-saneamiento?download=81:estrategia-saneamiento-nacional.
    Vargas, E., Pérez, Y., Hernandez, W., Checo, H., García-Cortés, D., Jauregui-Haza, U., 2021. Design and assessment of a domestic wastewater treatment system based on a constructed wetland with subsurface flow in Jarabacoa, Dominican Republic. Procedia Environmental Science:Eng. Manag. J. 8(2), 371-380.
    Vasquez Guerra, J.S., 2019. Sistemas implementados con ingenieria Verde en el Manejo de las Aguas Residuales en la Republica Dominicana, Cso:Municipio de Jarabacoa, Ano 2018. Ph.D. Dissertation. Universidad Centro Panamericano de Estudios Superiores, Mexico.
    Vidanage, V.V.D.N.G., Karunarathna, A.K., Alahakoon, A.M.Y.W., Jayawardene, S.M.N., 2020. Development of an effective and efficient integrated charcoal filter constructed wetland system for wastewater treatment. In:Recent Trends in Waste Water Treatment and Water Resource Management. Springer, Singapore, pp. 47-56.
    Villamar, C.-A., Vera-Puerto, I., Rivera, D., De la Hoz, F., 2018. Reuse and recycling of livestock and municipal wastewater in Chilean agriculture:A preliminary assessment. Water 10(6), 817. https://doi.org/10.3390/w10060817.
    Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 380, 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014.
    Vymazal, J., Brezinova, T., 2016. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment:A review. Chem. Eng. J. 290, 232-242. https://doi.org/10.1016/j.cej.2015.12.108.
    Vymazal, J., 2019. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years?Chem. Eng. J. 378, 122117. https://doi.org/10.1016/j.cej.2019.122117.
    Vymazal, J., Zhao, Y., Mander, U., 2021. Recent research challenges in constructed wetlands for wastewater treatment:A review. Ecol. Eng. 169, 106318. https://doi.org/10.1016/j.ecoleng.2021.106318.
    Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Ng, W.J., Tan, S.K., 2014. Application of constructed wetlands for wastewater treatment in developing countries-a review of recent developments (2000-2013). J. Environ. Manag. 141, 116-131. https://doi.org/10.1016/j.jenvman.2014.03.015.
    Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K., Ng, W.J., 2015. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). J. Environ. Sci. 30, 30-46. https://doi.org/10.1016/j.jes.2014.10.013.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (22) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint