Citation: | Kenneth Mensah, Hassan Shokry, Marwa Elkady, Hamada B. Hawash, Mahmoud Samy. 2024: Enhanced photocatalytic degradation of dyes using a novel waste toner-based TiO2/Fe2O3@nanographite nanohybrid: A sustainable approach. Water Science and Engineering, 17(3): 226-235. doi: 10.1016/j.wse.2024.01.005 |
Al-Ghouti, M.A., Da'ana, D.A., 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
|
Aliahmad, M., Nasiri Moghaddam, N., 2013. Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater. Sci. Poland 31, 264-268. https://doi.org/10.2478/s13536-012-0100-6.
|
Asif, A.H., Wang, S., Sun, H., 2021. Hematite-based nanomaterials for photocatalytic degradation of pharmaceuticals and personal care products (PPCPs): A short review. Curr. Opin. Green Sustain. Chem. 28, 100447. https://doi.org/10.1016/j.cogsc.2021.100447.
|
Bakre, P.V., Volvoikar, P.S., Vernekar, A.A., Tilve, S.G., 2016. Influence of acid chain length on the properties of TiO2 prepared by sol-gel method and LC-MS studies of methylene blue photodegradation. J. Colloid Interface Sci. 474, 58-67. https://doi.org/10.1016/j.jcis.2016.04.011.
|
Behnajady, M.A., Modirshahla, N., Mirzamohammady, M., Vahid, B., Behnajady, B., 2008. Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J. Hazard. Mater. 160(2-3), 508-513. https://doi.org/10.1016/j.jhazmat.2008.03.049.
|
Biswas, A., Patra, A.K., Sarkar, S., Das, D., Chattopadhyay, D., De, S., 2020. Synthesis of highly magnetic iron oxide nanomaterials from waste iron by one-step approach. Colloids Surf. A Physicochem. Eng. Asp. 589, 124420. https://doi.org/10.1016/j.colsurfa.2020.124420.
|
Chakrabortty, D., Gupta, S.S., 2013. Photo-catalytic decolourisation of toxic dye with N-doped titania: A case study with Acid Blue 25. J. Environ. Sci. 25(5), 1034-1043. https://doi.org/10.1016/S1001-0742(12)60108-9.
|
Collivignarelli, M.C., Abba, A., Carnevale Miino, M., Damiani, S., 2019. Treatments for color removal from wastewater: State of the art. J. Environ. Manage. 236, 727-745. https://doi.org/10.1016/j.jenvman.2018.11.094.
|
Crini, G., Lichtfouse, E., 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17, 145-155. https://doi.org/10.1007/s10311-018-0785-9.
|
Elreedy, A., Ismail, S., Ali, M., Ni, S.Q., Fujii, M., Elsamadony, M., 2021. Unraveling the capability of graphene nanosheets and γ-Fe2O3 nanoparticles to stimulate anammox granular sludge. J. Environ. Manage. 277, 111495. https://doi.org/10.1016/j.jenvman.2020.111495.
|
Fu, H., Sun, S., Yang, X., Li, W., An, X., Zhang, H., Dong, Y., Jiang, X., Yu, A., 2018. A facile coating method to construct uniform porous α-Fe2O3@TiO2 core-shell nanostructures with enhanced solar light photocatalytic activity. Powder Technol. 328, 389-396. https://doi.org/10.1016/j.powtec.2018.01.067.
|
Gao, D., Long, H., Wang, X., Yu, J., Yu, H., 2023. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv. Funct. Mater. 33(6), 2209994. https://doi.org/10.1002/adfm.202209994.
|
Gupta, S.S., Chakrabortty, D., 2017. Photocatalytic decolourisation of a toxic dye, acid blue 25, with graphene based N-doped titania. Indian J. Chem. 56A, 1293-1301.
|
Hitam, C.N.C., Jalil, A.A., 2020. A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J. Environ. Manage. 258, 110050. https://doi.org/10.1016/j.jenvman.2019.110050.
|
Huang, C., Jin, B., Han, M., Zhang, G., Arp, H.P.H., 2023. Identifying persistent, mobile and toxic (PMT) organic compounds detected in shale gas wastewater. Sci. Total Environ. 858, 159821. https://doi.org/10.1016/j.scitotenv.2022.159821.
|
Islam, M.S., Kurawaki, J., Kusumoto, Y., Abdulla-Al-Mamun, M., Bin Mukhlish, M.Z., 2011. Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) nanoparticles. J. Sci. Res. 4(1), 99. https://doi.org/10.3329/jsr.v4i1.8727.
|
Kausor, M.A., Chakrabortty, D., 2020. Optimization of system parameters and kinetic study of photocatalytic degradation of toxic acid blue 25 dye by Ag3PO4@RGO nanocomposite. J. Nanopart. Res. 22, 94. https://doi.org/10.1007/s11051-020-04829-3.
|
Khataee, A.R., Pons, M.N., Zahraa, O., 2009. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. J. Hazard. Mater. 168, 451-457. https://doi.org/10.1016/j.jhazmat.2009.02.052.
|
Kumar, B., Smita, K., Galeas, S., Guerrero, V.H., Debut, A., Cumbal, L., 2021. One-pot biosynthesis of maghemite (γ-Fe2O3) nanoparticles in aqueous extract of Ficus carica fruit and their application for antioxidant and 4-nitrophenol reduction. Waste Biomass Valorization 12, 3575-3587. https://doi.org/10.1007/s12649-020-01279-9.
|
Meda, U.S., Vora, K., Athreya, Y., Mandi, U.A., 2022. Titanium dioxide based heterogeneous and heterojunction photocatalysts for pollution control applications in the construction industry. Process Saf. Environ. Protect. 161, 771-787. https://doi.org/10.1016/j.psep.2022.03.066.
|
Mensah, K., Mahmoud, H., Fujii, M., Samy, M., Shokry, H., 2022a. Dye removal using novel adsorbents synthesized from plastic waste and eggshell: Mechanism, isotherms, kinetics, thermodynamics, regeneration, and water matrices. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-022-03304-4.
|
Mensah, K., Mahmoud, H., Fujii, M., Shokry, H., 2022b. Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization. J. Water Process Eng. 45, 102512. https://doi.org/10.1016/j.jwpe.2021.102512.
|
Mensah, K., Samy, M., Ezz, H., Elkady, M., Shokry, H., 2022c. Utilization of iron waste from steel industries in persulfate activation for effective degradation of dye solutions. J. Environ. Manage. 314, 115108. https://doi.org/10.1016/j.jenvman.2022.115108.
|
Mensah, K., Samy, M., Mahmoud, H., Fujii, M., Shokry, H., 2022d. Rapid adsorption of sulfamethazine on mesoporous graphene produced from plastic waste: Optimization, mechanism, isotherms, kinetics, and thermodynamics. Int. J. Environ. Sci. Technol. 20, 9717-9732. https://doi.org/10.1007/s13762-022-04646-2.
|
Mohan, H., Vadivel, S., Lee, S.W., Lim, J.M., Lovanh, N., Park, Y.J., Shin, T., Seralathan, K.K., Oh, B.T., 2022. Improved visible-light-driven photocatalytic removal of Bisphenol A using V2O5/WO3 decorated over Zeolite: Degradation mechanism and toxicity. Environ. Res. 212, 113136. https://doi.org/10.1016/j.envres.2022.113136.
|
Mu, R., Ao, Y., Wu, T., Wang, C., Wang, P., 2020. Synthesis of novel ternary heterogeneous anatase-TiO2 (B) biphase nanowires/Bi4O5I2 composite photocatalysts for the highly efficient degradation of acetaminophen under visible light irradiation. J. Hazard Mater. 382, 121083. https://doi.org/10.1016/j.jhazmat.2019.121083.
|
Nadimi, M., Ziarati Saravani, A., Aroon, M.A., Ebrahimian Pirbazari, A., 2019. Photodegradation of methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light. Mater. Chem. Phys. 225, 464-474. https://doi.org/10.1016/j.matchemphys.2018.11.029.
|
Ni, L., Du, C., Wu, H., Li, Y., Li, X., Xu, C., 2021. Preparation and characterization of Fe2O3/Bi2WO6 composite and photocatalytic degradation mechanism of microcystin-LR. Water Sci. Eng. 14(2), 109-118. https://doi.org/10.1016/j.wse.2021.06.002.
|
Nuengmatcha, P., Kuyyogsuy, A., Porrawatkul, P., Pimsen, R., Chanthai, S., Nuengmatcha, P., 2023. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst. Water Sci. Eng. 16(3), 243-251. https://doi.org/10.1016/j.wse.2023.01.004.
|
Parthasarathy, M., 2021. Challenges and emerging trends in toner waste recycling: A review. Recycling 6(3), 57. https://doi.org/10.3390/recycling6030057.
|
Pawar, R.C., Lee, C.S., 2015. Heterogeneous Nanocomposite-Photocatalysis for Water Purification, Heterogeneous Nanocomposite-Photocatalysis for Water Purification. Elsevier, Amsterdam. https://doi.org/10.1016/C2014-0-02650-0.
|
Pazdzior, K., Bilinska, L., Ledakowicz, S., 2019. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 376, 120597. https://doi.org/10.1016/j.cej.2018.12.057.
|
Pervez, M.N., He, W., Zarra, T., Naddeo, V., Zhao, Y., 2020. New sustainable approach for the production of Fe3O4/graphene oxide-activated persulfate system for dye removal in real wastewater. Water 12(3), 733. https://doi.org/10.3390/w12030733.
|
Prakruthi, K., Ujwal, M.P., Yashas, S.R., Mahesh, B., Kumara Swamy, N., Shivaraju, H.P., 2022. Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: An overview. Environ. Sci. Pollut. Res. 29, 4930-4957. https://doi.org/10.1007/s11356-021-17361-1.
|
Rubangakene, N.O., Elkady, M., Elwardany, A., Fujii, M., Sekiguchi, H., Shokry, H., 2022. Novel nano-biosorbent materials from thermal catalytic degradation of green pea waste for cationic and anionic dye decolorization. Biomass Convers. Biorefin. 13, 14873-14888. https://doi.org/10.1007/s13399-022-03299-y.
|
Safo, K., Noby, H., Matatoshi, M., Naragino, H., El-Shazly, A.H., 2022. Statistical optimization modeling of organic dye photodegradation process using slag nanocomposite. Res. Chem. Intermed. 48, 4183-4208. https://doi.org/10.1007/s11164-022-04807-5.
|
Saini, D., Aggarwal, R., Anand, S.R., Satrawala, N., Joshi, R.K., Sonkar, S.K., 2020. Sustainable feasibility of waste printer ink to magnetically separable iron oxide-doped nanocarbons for styrene oxidation. Mater. Today Chem. 16, 100256. https://doi.org/10.1016/j.mtchem.2020.100256.
|
Samy, M., Mossad, M., El-Etriby, H.K., 2019. Synthesized nano titanium for methylene blue removal under various operational conditions. Desalin. Water Treat. 165, 374-381. https://doi.org/10.5004/dwt.2019.24510.
|
Samy, M., Alalm, M.G., Mossad, M., 2020a. Utilization of iron sludge resulted from electro-coagulation in heterogeneous photo-Fenton process. Water Pract. Technol. 15(4), 1228-1237. https://doi.org/10.2166/wpt.2020.093.
|
Samy, M., Ibrahim, M.G., Gar Alalm, M., Fujii, M., Diab, K.E., ElKady, M., 2020b. Innovative photocatalytic reactor for the degradation of chlorpyrifos using a coated composite of ZrV2O7 and graphene nano-platelets. Chem. Eng. J. 395, 124974. https://doi.org/10.1016/j.cej.2020.124974.
|
Samy, M., Ibrahim, M.G., Gar Alalm, M., Fujii, M., Ookawara, S., Ohno, T., 2020c. Photocatalytic degradation of trimethoprim using S-TiO2 and Ru/WO3/ZrO2 immobilized on reusable fixed plates. J. Water Process Eng. 33, 3-10. https://doi.org/10.1016/j.jwpe.2019.101023.
|
Samy, M., Ibrahim, M.G., Fujii, M., Diab, K.E., ElKady, M., Gar Alalm, M., 2021. CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor. Chem. Eng. J. 406, 127152. https://doi.org/10.1016/j.cej.2020.127152.
|
Samy, M., Mensah, K., Gar Alalm, M., 2022. A review on photodegradation mechanism of bio-resistant pollutants: Analytical methods, transformation products, and toxicity assessment. J. Water Process Eng. 49, 103151. https://doi.org/10.1016/j.jwpe.2022.103151.
|
Scarpelli, F., Mastropietro, T.F., Poerio, T., Godbert, N., 2018. Mesoporous TiO2 thin films: State of the art. In: Yang, D. (Ed.), Titanium Dioxide - Material for a Sustainable Environment. IntechOpen, London, pp. 57-80. https://doi.org/10.5772/intechopen.74244.
|
Subramonian, W., Wu, T.Y., Chai, S.P., 2017a. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst. J. Environ. Manage. 187, 298-310. https://doi.org/10.1016/j.jenvman.2016.10.024.
|
Subramonian, W., Wu, T.Y., Chai, S.P., 2017b. Using one-step facile and solvent-free mechanochemical process to synthesize photoactive Fe2O3-TiO2 for treating industrial wastewater. J. Alloys Compd. 695, 496-507. https://doi.org/10.1016/j.jallcom.2016.10.006.
|
Sun, L., Dong, H., Xu, J., Liu, X., Tang, H., 2023. Unravelling the synergy between phase engineering and interface regulation in TiO2/1T-rich MoSe2 heterostructures for efficient photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 11(21), 8009-8019. https://doi.org/10.1021/acssuschemeng.2c06430.
|
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117.
|
Wang, H., Yu, S., Gao, T., Tan, X., Meng, X., Xiao, S., 2023. The efficient degradation of organic pollutants by Z-scheme MIL-88A@TiO2 heterojunction photo-Fenton catalyst: The synergistic effect of photocatalysis and Fenton catalysis. J. Alloys Compd. 960, 170688. https://doi.org/10.1016/j.jallcom.2023.170688.
|
Wang, Y., Fan, X., Wang, S., Zhang, G., Zhang, F., 2013. Magnetically separable γ-Fe2O3/TiO2 nanotubes for photodegradation of aqueous methyl orange. Mater. Res. Bull. 48(2), 785-789. https://doi.org/10.1016/j.materresbull.2012.11.058.
|
Xiang, X., Wu, L., Zhu, J., Li, J., Liao, X., Huang, H., Fan, J., Lv, K., 2021. Photocatalytic degradation of sulfadiazine in suspensions of TiO2 nanosheets with exposed (001) facets. Chin. Chem. Lett. 32(10), 3215-3220. https://doi.org/10.1016/j.cclet.2021.03.064.
|
Zhang, J.J., Qi, P., Li, J., Zheng, X.C., Liu, P., Guan, X.X., Zheng, G.P., 2018. Three-dimensional Fe2O3-TiO2-graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes. J. Ind. Eng. Chem. 61, 407-415. https://doi.org/10.1016/j.jiec.2017.12.040.
|
Zhao, Z., Li, S., Guo, P., Zhao, X., Zhou, Y., Zhang, H., 2022. Photocatalytic degradation of organic pollution by converter dust under visible light: Optimization and mechanism. J. Mater. Cycles Waste Manag. 24, 1958-1970. https://doi.org/10.1007/s10163-022-01458-x.
|