| Citation: | Yan-tao Zhu, Chong-shi Gu, Mihai A. Diaconeasa. 2024: A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model. Water Science and Engineering, 17(4): 417-424. doi: 10.1016/j.wse.2024.08.003 |
|
Belmokre, A., Mihoubi, M.K., Santillan, D., 2019. Analysis of dam behavior by statistical models: Application of the random forest approach. KSCE J. Civ. Eng. 23, 4800-4811. https://doi.org/10.1007/s12205-019-0339-0.
|
|
Chen, B., Hu, T., Huang, Z., Fang, C., 2019. A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data. Struct. Health Monit. 18(5/6), 1355-1371. https://doi.org/10.1177/1475921718797949.
|
|
Chen, B., Huang, Z., Bao, T., Zhu, Z., 2021a. Deformation early-warning index for heightened gravity dam during impoundment period. Water Sci. Eng. 14(1), 54-64. https://doi.org/10.1016/j.wse.2021.03.001.
|
|
Chen, H., Chen, X., Guan, J., Zhang, X., Guo, J., Yang, G., Xu, B., 2022. A combination model for evaluating deformation regional characteristics of arch dams using time series clustering and residual correction. Mech. Syst. Signal Process. 179, 109397. https://doi.org/10.1016/j.ymssp.2022.109397.
|
|
Chen, W., Wang, X., Cai, Z., Liu, C., Zhu, Y., Lin, W., 2021b. DP-GMM clustering-based ensemble learning prediction methodology for dam deformation considering spatiotemporal differentiation. Knowl. Base Syst. 222, 106964. https://doi.org/10.1016/j.knosys.2021.106964.
|
|
Gu, C., Fu, X., Shao, C., Shi, Z., Su, H., 2020. Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: A case study. Int. J. Environ. Res. Publ. Health 17(1), 319. https://doi.org/10.3390/ijerph17010319.
|
|
Gu, C., Wang, Y., Gu, H., Hu, Y., Yang, M., Cao, W., Fang, Z., 2022. A combined safety monitoring model for high concrete dams. Appl. Sci. 12(23), 12103. https://doi.org/10.3390/app122312103.
|
|
Gu, H., Wang, T., Zhu Y., Wang, C.,Yang, D., Huang, L., 2021. A completion method for missing concrete dam deformation monitoring data pieces. Appl. Sci. 11(1), 463. https://doi.org/10.3390/app11010463.
|
|
Hu, Y., Gu, C., Meng, Z., Shao, C., Min, Z., 2022. Prediction for the settlement of concrete face rockfill dams using optimized LSTM model via correlated monitoring data. Water 14(14), 2157. https://doi.org/10.3390/w14142157.
|
|
Jiang, Z., Chen, H., 2022. A new early warning method for dam displacement behavior based on non-normal distribution function. Water Sci. Eng. 15(2), 170-178. https://doi.org/10.1016/j.wse.2022.04.001.
|
|
Jeon, J., Lee, J., Shin, D., Park, H., 2009. Development of dam safety management system. Adv. Eng. Software 40(8), 554-563. https://doi.org/10.1016/j.advengsoft.2008.10.009.
|
|
Li, Y., Yin, Q., Zhang, Y., Zhou, H., 2023. Deformation prediction model of concrete face rockfill dams based on an improved random forest model. Water Sci. Eng. 16(4), 390-398. https://doi.org/10.1016/j.wse.2023.09.005.
|
|
Lin, C., Li, T., Chen, S., Yuan, L., van Gelder, P.H.A.J.M., Yorke-Smith, N., 2022. Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification. Eng. Struct. 266, 114553. https://doi.org/10.1016/j.engstruct.2022.114553.
|
|
Niu, X., 2022. The first stage of the middle-line South-to-North Water-Transfer Project. Engineering 16, 21-28. https://doi.org/10.1016/j.eng.2022.07.001.
|
|
Pate-Cornell, M.E., Tagaras, G., 1986. Risk costs for new dams: Economic analysis and effects of monitoring. Water Resour. Res. 22(1),5-14. https://doi.org/10.1029/WR022i001p00005.
|
|
Rong, Z., Pang, R., Xu, B., Zhou, Y., 2024. Dam safety monitoring data anomaly recognition using multiple-point model with local outlier factor. Autom. ConStruct. 159, 105290. https://doi.org/10.1016/j.autcon.2024.105290.
|
|
Shao, C., Xu, Y., Chen, H., Zheng, S., Qin, X., 2023. Ordinary Kriging interpolation method combined with FEM for arch dam deformation field estimation. Mathematics 11(5), 1106. https://doi.org/10.3390/math11051106.
|
|
Wang, S., Xu, C., Gu, C., Su, H., Hu, K., Xia, Q., 2020. Displacement monitoring model of concrete dams using the shape feature clustering-based temperature principal component factor. Struct. Control Health Monit. 27(10), e2603. https://doi.org/10.1002/stc.2603.
|
|
Wang, S., Xu, C., Liu, Y., Wu, B., 2021. Mixed-coefficient panel model for evaluating the overall deformation behavior of high arch dams using the spatial clustering. Struct. Control Health Monit. 28(10), e2809. https://doi.org/10.1002/stc.2809.
|
|
Wang, S., Xu, C., Liu, Y., Xu, B., 2022. Zonal intelligent inversion of viscoelastic parameters of high arch dams using an HEST statistical model. J. Civ. Struct. Heal. Monit. 12, 207-223. https://doi.org/10.1007/s13349-021-00538-0.
|
|
Wei, B., Chen, L., Li, H., Yuan, D., Wang, G., 2020. Optimized prediction model for concrete dam displacement based on signal residual amendment. Appl. Math. Model. 78, 20-36. https://doi.org/10.1016/j.apm.2019.09.046.
|
|
Xu, W., Niu, X., Zhu, Y., 2024. Deformation behavior and damage evaluation of fly ash-slag based geopolymer concrete under cyclic tension. J. Build. Eng. 86,108664. https://doi.org/10.1016/j.jobe.2024.108664.
|
|
Yuan, D., Wei, B., Xie, B., Zhong, Z., 2020. Modified dam deformation monitoring model considering periodic component contained in residual sequence. Struct. Control Health Monit. 27(12), e2633. https://doi.org/10.1002/stc.2633.
|
|
Yuan, D., Gu, C., Qin, X., Shao, C., He, J., 2022. Performance-improved TSVR-based DHM model of super high arch dams using measured air temperature. Eng. Struct. 250, 113400. https://doi.org/10.1016/j.engstruct.2021.113400.
|
|
Zhan, M., Chen, B., Wu, Z., 2023. Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation. Water Sci. Eng. 16(4), 408-418. https://doi.org/10.1016/j.wse.2023.09.002.
|
|
Zhao, E., Li, B., Chen, H., Nie, B., 2023. Deformation critical threshold estimation of Xiaowan ultrahigh arch dam with time-varying grey model. Water Sci. Eng. 16(3), 302-312. https://doi.org/10.1016/j.wse.2023.07.001.
|
|
Zhu, Y., Tang, H., 2023. Automatic damage detection and diagnosis for hydraulic structures using drones and artificial intelligence techniques. Rem. Sens. 15(3), 615. https://doi.org/10.3390/rs15030615.
|
|
Zhu, Y., Xie, M., Zhang, K., Li, Z., 2023a. A dam deformation residual correction method for high arch dams using phase space reconstruction and an optimized long short-term memory network. Mathematics 11(9), 2010. https://doi.org/10.3390/math11092010.
|
|
Zhu, Y., Zhang, Z., Gu, C., Li, Y., Zhang, K., Xie, M., 2023b. A coupled model for dam foundation seepage behavior monitoring and forecasting based on variational mode decomposition and improved temporal convolutional network. Struct. Contr. Health Monit. 2023, 3879096. https://doi.org/10.1155/2023/3879096.
|