Volume 17 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Yan-tao Zhu, Chong-shi Gu, Mihai A. Diaconeasa. 2024: A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model. Water Science and Engineering, 17(4): 417-424. doi: 10.1016/j.wse.2024.08.003
Citation: Yan-tao Zhu, Chong-shi Gu, Mihai A. Diaconeasa. 2024: A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model. Water Science and Engineering, 17(4): 417-424. doi: 10.1016/j.wse.2024.08.003

A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model

doi: 10.1016/j.wse.2024.08.003
Funds:

This work was supported by the National Key R&D Program of China (Grant No.2022YFC3005401),the Fundamental Research Funds for the Central Universities (Grant No.B230201013),the National Natural Science Foundation of China (Grants No.52309152,U2243223,and U23B20150),the Natural Science Foundation of Jiangsu Province (Grant No.BK20220978),and the Open Fund of National Dam Safety Research Center (Grant No.CX2023B03).

  • Received Date: 2023-12-20
  • Accepted Date: 2024-08-26
  • Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam. However, the deformation monitoring data are often incomplete due to environmental changes, monitoring instrument faults, and human operational errors, thereby often hindering the accurate assessment of actual deformation patterns. This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data. It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring. The proposed method was validated in a concrete dam project, with the model error maintaining within 5%, demonstrating its effectiveness in processing missing deformation data. This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.

     

  • loading
  • Belmokre, A., Mihoubi, M.K., Santillan, D., 2019. Analysis of dam behavior by statistical models: Application of the random forest approach. KSCE J. Civ. Eng. 23, 4800-4811. https://doi.org/10.1007/s12205-019-0339-0.
    Chen, B., Hu, T., Huang, Z., Fang, C., 2019. A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data. Struct. Health Monit. 18(5/6), 1355-1371. https://doi.org/10.1177/1475921718797949.
    Chen, B., Huang, Z., Bao, T., Zhu, Z., 2021a. Deformation early-warning index for heightened gravity dam during impoundment period. Water Sci. Eng. 14(1), 54-64. https://doi.org/10.1016/j.wse.2021.03.001.
    Chen, H., Chen, X., Guan, J., Zhang, X., Guo, J., Yang, G., Xu, B., 2022. A combination model for evaluating deformation regional characteristics of arch dams using time series clustering and residual correction. Mech. Syst. Signal Process. 179, 109397. https://doi.org/10.1016/j.ymssp.2022.109397.
    Chen, W., Wang, X., Cai, Z., Liu, C., Zhu, Y., Lin, W., 2021b. DP-GMM clustering-based ensemble learning prediction methodology for dam deformation considering spatiotemporal differentiation. Knowl. Base Syst. 222, 106964. https://doi.org/10.1016/j.knosys.2021.106964.
    Gu, C., Fu, X., Shao, C., Shi, Z., Su, H., 2020. Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: A case study. Int. J. Environ. Res. Publ. Health 17(1), 319. https://doi.org/10.3390/ijerph17010319.
    Gu, C., Wang, Y., Gu, H., Hu, Y., Yang, M., Cao, W., Fang, Z., 2022. A combined safety monitoring model for high concrete dams. Appl. Sci. 12(23), 12103. https://doi.org/10.3390/app122312103.
    Gu, H., Wang, T., Zhu Y., Wang, C.,Yang, D., Huang, L., 2021. A completion method for missing concrete dam deformation monitoring data pieces. Appl. Sci. 11(1), 463. https://doi.org/10.3390/app11010463.
    Hu, Y., Gu, C., Meng, Z., Shao, C., Min, Z., 2022. Prediction for the settlement of concrete face rockfill dams using optimized LSTM model via correlated monitoring data. Water 14(14), 2157. https://doi.org/10.3390/w14142157.
    Jiang, Z., Chen, H., 2022. A new early warning method for dam displacement behavior based on non-normal distribution function. Water Sci. Eng. 15(2), 170-178. https://doi.org/10.1016/j.wse.2022.04.001.
    Jeon, J., Lee, J., Shin, D., Park, H., 2009. Development of dam safety management system. Adv. Eng. Software 40(8), 554-563. https://doi.org/10.1016/j.advengsoft.2008.10.009.
    Li, Y., Yin, Q., Zhang, Y., Zhou, H., 2023. Deformation prediction model of concrete face rockfill dams based on an improved random forest model. Water Sci. Eng. 16(4), 390-398. https://doi.org/10.1016/j.wse.2023.09.005.
    Lin, C., Li, T., Chen, S., Yuan, L., van Gelder, P.H.A.J.M., Yorke-Smith, N., 2022. Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification. Eng. Struct. 266, 114553. https://doi.org/10.1016/j.engstruct.2022.114553.
    Niu, X., 2022. The first stage of the middle-line South-to-North Water-Transfer Project. Engineering 16, 21-28. https://doi.org/10.1016/j.eng.2022.07.001.
    Pate-Cornell, M.E., Tagaras, G., 1986. Risk costs for new dams: Economic analysis and effects of monitoring. Water Resour. Res. 22(1),5-14. https://doi.org/10.1029/WR022i001p00005.
    Rong, Z., Pang, R., Xu, B., Zhou, Y., 2024. Dam safety monitoring data anomaly recognition using multiple-point model with local outlier factor. Autom. ConStruct. 159, 105290. https://doi.org/10.1016/j.autcon.2024.105290.
    Shao, C., Xu, Y., Chen, H., Zheng, S., Qin, X., 2023. Ordinary Kriging interpolation method combined with FEM for arch dam deformation field estimation. Mathematics 11(5), 1106. https://doi.org/10.3390/math11051106.
    Wang, S., Xu, C., Gu, C., Su, H., Hu, K., Xia, Q., 2020. Displacement monitoring model of concrete dams using the shape feature clustering-based temperature principal component factor. Struct. Control Health Monit. 27(10), e2603. https://doi.org/10.1002/stc.2603.
    Wang, S., Xu, C., Liu, Y., Wu, B., 2021. Mixed-coefficient panel model for evaluating the overall deformation behavior of high arch dams using the spatial clustering. Struct. Control Health Monit. 28(10), e2809. https://doi.org/10.1002/stc.2809.
    Wang, S., Xu, C., Liu, Y., Xu, B., 2022. Zonal intelligent inversion of viscoelastic parameters of high arch dams using an HEST statistical model. J. Civ. Struct. Heal. Monit. 12, 207-223. https://doi.org/10.1007/s13349-021-00538-0.
    Wei, B., Chen, L., Li, H., Yuan, D., Wang, G., 2020. Optimized prediction model for concrete dam displacement based on signal residual amendment. Appl. Math. Model. 78, 20-36. https://doi.org/10.1016/j.apm.2019.09.046.
    Xu, W., Niu, X., Zhu, Y., 2024. Deformation behavior and damage evaluation of fly ash-slag based geopolymer concrete under cyclic tension. J. Build. Eng. 86,108664. https://doi.org/10.1016/j.jobe.2024.108664.
    Yuan, D., Wei, B., Xie, B., Zhong, Z., 2020. Modified dam deformation monitoring model considering periodic component contained in residual sequence. Struct. Control Health Monit. 27(12), e2633. https://doi.org/10.1002/stc.2633.
    Yuan, D., Gu, C., Qin, X., Shao, C., He, J., 2022. Performance-improved TSVR-based DHM model of super high arch dams using measured air temperature. Eng. Struct. 250, 113400. https://doi.org/10.1016/j.engstruct.2021.113400.
    Zhan, M., Chen, B., Wu, Z., 2023. Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation. Water Sci. Eng. 16(4), 408-418. https://doi.org/10.1016/j.wse.2023.09.002.
    Zhao, E., Li, B., Chen, H., Nie, B., 2023. Deformation critical threshold estimation of Xiaowan ultrahigh arch dam with time-varying grey model. Water Sci. Eng. 16(3), 302-312. https://doi.org/10.1016/j.wse.2023.07.001.
    Zhu, Y., Tang, H., 2023. Automatic damage detection and diagnosis for hydraulic structures using drones and artificial intelligence techniques. Rem. Sens. 15(3), 615. https://doi.org/10.3390/rs15030615.
    Zhu, Y., Xie, M., Zhang, K., Li, Z., 2023a. A dam deformation residual correction method for high arch dams using phase space reconstruction and an optimized long short-term memory network. Mathematics 11(9), 2010. https://doi.org/10.3390/math11092010.
    Zhu, Y., Zhang, Z., Gu, C., Li, Y., Zhang, K., Xie, M., 2023b. A coupled model for dam foundation seepage behavior monitoring and forecasting based on variational mode decomposition and improved temporal convolutional network. Struct. Contr. Health Monit. 2023, 3879096. https://doi.org/10.1155/2023/3879096.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (159) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return