Articles in press are presented at https://www.sciencedirect.com/journal/water-science-and-engineering/articles-in-press
2025, 18(2): 125-128.
doi: 10.1016/j.wse.2025.04.002
Abstract:
2025, 18(2): 129-140.
doi: 10.1016/j.wse.2024.10.001
Abstract:
Tetracyclines (TCs) are the second most commonly used antibiotics worldwide, utilized in medical treatments and animal husbandry. Although effective against various infectious diseases, TC residues persist in the environment and contribute to the emergence of antibiotic-resistant pathogens, posing significant risks to human health. This study employed the heterogeneous Fenton process to degrade TC using soybean residue-derived magnetic biochar (Fe-SoyB) as the catalyst. The Fe-SoyB sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and superconducting quantum interference device (SQUID) techniques. The effects of key parameters, including pH, H2O2 concentration, catalyst dosage, and initial TC concentration, on TC degradation were investigated. The results indicated that the TC removal efficiency decreased with increasing initial TC concentration, while it was improved with higher H2O2 concentrations and greater catalyst dosages. The optimal conditions for the Fenton-like process were determined: a pH of 3, a H2O2 concentration of 245 mmol/L, an initial TC concentration of 800 mg/L, and a catalyst dosage of 0.75 g/L, achieving a removal efficiency of 90.0% after 150 min. Additionally, the TC removal efficiency of the Fe-SoyB system varied significantly across different water matrices, with 87.1% for deionized water, 78.5% for tap water, and 72.5% for river water. The catalyst demonstrated notable stability, maintaining a TC removal efficiency of 79.7% after three cycles of use. Overall, Fe-SoyB shows promise as a cost-effective catalyst for the elimination of organic pollutants in aqueous solutions.
Tetracyclines (TCs) are the second most commonly used antibiotics worldwide, utilized in medical treatments and animal husbandry. Although effective against various infectious diseases, TC residues persist in the environment and contribute to the emergence of antibiotic-resistant pathogens, posing significant risks to human health. This study employed the heterogeneous Fenton process to degrade TC using soybean residue-derived magnetic biochar (Fe-SoyB) as the catalyst. The Fe-SoyB sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and superconducting quantum interference device (SQUID) techniques. The effects of key parameters, including pH, H2O2 concentration, catalyst dosage, and initial TC concentration, on TC degradation were investigated. The results indicated that the TC removal efficiency decreased with increasing initial TC concentration, while it was improved with higher H2O2 concentrations and greater catalyst dosages. The optimal conditions for the Fenton-like process were determined: a pH of 3, a H2O2 concentration of 245 mmol/L, an initial TC concentration of 800 mg/L, and a catalyst dosage of 0.75 g/L, achieving a removal efficiency of 90.0% after 150 min. Additionally, the TC removal efficiency of the Fe-SoyB system varied significantly across different water matrices, with 87.1% for deionized water, 78.5% for tap water, and 72.5% for river water. The catalyst demonstrated notable stability, maintaining a TC removal efficiency of 79.7% after three cycles of use. Overall, Fe-SoyB shows promise as a cost-effective catalyst for the elimination of organic pollutants in aqueous solutions.
2025, 18(2): 141-150.
doi: 10.1016/j.wse.2025.02.001
Abstract:
Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods. This study presents a novel biofilm-based process for enhanced lignin removal in wastewater using the fungus Neurospora discreta, which effectively degrades lignin and forms robust biofilms at the air–liquid interface under specific conditions. The process was optimised using the Taguchi design of experiments approach, and three factors including pH, copper sulphate concentration, and trace element concentration were evaluated at three levels. Experimental data were analysed against three responses: lignin degradation efficiency and the activities of two ligninolytic enzymes (polyphenol oxidase and versatile peroxidase). The results indicated that wastewater pH was the most significant parameter affecting lignin degradation efficiency and enzyme activities. Over 70% lignin degradation was achieved at pH levels of 5 and 6 with copper sulphate concentrations above 4 mg/L, while degradation efficiency drastically dropped to 45% at a pH value of 7. Reversed-phase high-performance liquid chromatography analysis demonstrated the effects of the three factors on the polar and non-polar components of lignin in wastewater, revealing a clear decrease in all peak areas after treatment. Additionally, significant relationships were observed between biofilm properties (including porosity, water retention value, polysaccharide content, and protein content) and lignin removal efficiency. This study also reported for the first time the presence of versatile peroxidase, a ligninolytic enzyme, in Neurospora sp.
Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods. This study presents a novel biofilm-based process for enhanced lignin removal in wastewater using the fungus Neurospora discreta, which effectively degrades lignin and forms robust biofilms at the air–liquid interface under specific conditions. The process was optimised using the Taguchi design of experiments approach, and three factors including pH, copper sulphate concentration, and trace element concentration were evaluated at three levels. Experimental data were analysed against three responses: lignin degradation efficiency and the activities of two ligninolytic enzymes (polyphenol oxidase and versatile peroxidase). The results indicated that wastewater pH was the most significant parameter affecting lignin degradation efficiency and enzyme activities. Over 70% lignin degradation was achieved at pH levels of 5 and 6 with copper sulphate concentrations above 4 mg/L, while degradation efficiency drastically dropped to 45% at a pH value of 7. Reversed-phase high-performance liquid chromatography analysis demonstrated the effects of the three factors on the polar and non-polar components of lignin in wastewater, revealing a clear decrease in all peak areas after treatment. Additionally, significant relationships were observed between biofilm properties (including porosity, water retention value, polysaccharide content, and protein content) and lignin removal efficiency. This study also reported for the first time the presence of versatile peroxidase, a ligninolytic enzyme, in Neurospora sp.
2025, 18(2): 151-164.
doi: 10.1016/j.wse.2025.02.003
Abstract:
The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic ecosystems and human health. To solve this problem, this study synthesized a composite of titanium dioxide (TiO2) and steel slag nanocomposites (SSNC) at a 1:2 mass ratio to create a robust photocatalyst for the treatment of synthetic wastewater. The efficacy of this catalyst in degrading various dye pollutants, including methylene blue (MB), was tested under simulated solar light conditions. Comprehensive analyses were conducted to assess the physical and chemical characteristics, crystalline structure, energy gap, and point of zero charge of the composite. The TiO2-SSNC composite catalyst exhibited excellent stability, with a point of zero charge at 8.342 and an energy gap of 2.4 eV. The degradation process conformed to pseudo-first-order kinetics. Optimization of operational parameters was achieved through the response surface methodology. Reusability tests demonstrated that the TiO2-SSNC composite catalyst effectively degraded up to 93.41% of MB in the suspended mode and 92.03% in the coated mode after five cycles. Additionally, the degradation efficiencies for various dyes were significant, highlighting the potential of the composite for broad applications in industrial wastewater treatment. This study also explored the degradation mechanisms and identified byproducts, establishing a pathway for contaminant breakdown. The cost-benefit analysis revealed a total cost of 0.842 8 USD per cubic meter for each treatment activity, indicating low operational and production costs. These findings underscore the promise of the TiO2-SSNC composite as a cost-effective and efficient alternative for wastewater purification.
The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic ecosystems and human health. To solve this problem, this study synthesized a composite of titanium dioxide (TiO2) and steel slag nanocomposites (SSNC) at a 1:2 mass ratio to create a robust photocatalyst for the treatment of synthetic wastewater. The efficacy of this catalyst in degrading various dye pollutants, including methylene blue (MB), was tested under simulated solar light conditions. Comprehensive analyses were conducted to assess the physical and chemical characteristics, crystalline structure, energy gap, and point of zero charge of the composite. The TiO2-SSNC composite catalyst exhibited excellent stability, with a point of zero charge at 8.342 and an energy gap of 2.4 eV. The degradation process conformed to pseudo-first-order kinetics. Optimization of operational parameters was achieved through the response surface methodology. Reusability tests demonstrated that the TiO2-SSNC composite catalyst effectively degraded up to 93.41% of MB in the suspended mode and 92.03% in the coated mode after five cycles. Additionally, the degradation efficiencies for various dyes were significant, highlighting the potential of the composite for broad applications in industrial wastewater treatment. This study also explored the degradation mechanisms and identified byproducts, establishing a pathway for contaminant breakdown. The cost-benefit analysis revealed a total cost of 0.842 8 USD per cubic meter for each treatment activity, indicating low operational and production costs. These findings underscore the promise of the TiO2-SSNC composite as a cost-effective and efficient alternative for wastewater purification.
2025, 18(2): 165-176.
doi: 10.1016/j.wse.2024.09.001
Abstract:
The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment. This study presented a rapid and cost-effective direct heating method for synthesizing MnO2 nanoflowers on coil substrates for the removal of organic pollutants. Traditional methods often require high power, expensive equipment, and long synthesis times. In contrast, the direct heating approach successfully synthesized MnO2 nanoflowers in just 10 min with a heating power of approximately 40 W·h after the heating power and duration were optimized. These nanoflowers effectively degraded 99% Rhodamine B in 60 min with consistent repeatability. The catalytic mechanisms are attributed to crystal defects in MnO2, which generate electrons to produce H2O2. Mn2+ ions in the acidic solution further dissociate H2O2 molecules into hydroxyl radicals (·OH). The high efficiency of this synthesis method and the excellent reusability of MnO2 nanoflowers highlight their potential as a promising solution for the development of supporting MnO2 catalysts for organic dye removal applications.
The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment. This study presented a rapid and cost-effective direct heating method for synthesizing MnO2 nanoflowers on coil substrates for the removal of organic pollutants. Traditional methods often require high power, expensive equipment, and long synthesis times. In contrast, the direct heating approach successfully synthesized MnO2 nanoflowers in just 10 min with a heating power of approximately 40 W·h after the heating power and duration were optimized. These nanoflowers effectively degraded 99% Rhodamine B in 60 min with consistent repeatability. The catalytic mechanisms are attributed to crystal defects in MnO2, which generate electrons to produce H2O2. Mn2+ ions in the acidic solution further dissociate H2O2 molecules into hydroxyl radicals (·OH). The high efficiency of this synthesis method and the excellent reusability of MnO2 nanoflowers highlight their potential as a promising solution for the development of supporting MnO2 catalysts for organic dye removal applications.
2019, 12(4): 274-283.
doi: 10.1016/j.wse.2019.12.004
摘要:
Increased urbanisation, economic growth, and long-term climate variability have made both the UK and China more susceptible to urban and river flooding, putting people and property at increased risk. This paper presents a review of the current flooding challenges that are affecting the UK and China and the actions that each country is undertaking to tackle these problems. Particular emphases in this paper are laid on (1) learning from previous flooding events in the UK and China, and (2) which management methodologies are commonly used to reduce flood risk. The paper concludes with a strategic research plan suggested by the authors, together with proposed ways to overcome identified knowledge gaps in flood management. Recommendations briefly comprise the engagement of all stakeholders to ensure a proactive approach to land use planning, early warning systems, and water-sensitive urban design or redesign through more effective policy, multi-level flood models, and data driven models of water quantity and quality.
Increased urbanisation, economic growth, and long-term climate variability have made both the UK and China more susceptible to urban and river flooding, putting people and property at increased risk. This paper presents a review of the current flooding challenges that are affecting the UK and China and the actions that each country is undertaking to tackle these problems. Particular emphases in this paper are laid on (1) learning from previous flooding events in the UK and China, and (2) which management methodologies are commonly used to reduce flood risk. The paper concludes with a strategic research plan suggested by the authors, together with proposed ways to overcome identified knowledge gaps in flood management. Recommendations briefly comprise the engagement of all stakeholders to ensure a proactive approach to land use planning, early warning systems, and water-sensitive urban design or redesign through more effective policy, multi-level flood models, and data driven models of water quantity and quality.
2021, 14(2): 139-148.
doi: 10.1016/j.wse.2021.06.006
摘要:
To assess the magnitude of water quality decline in the Turag River of Bangladesh, this study examined the seasonal variation of physicochemical parameters of water, identified potential pollution sources, and clustered the monitoring months with similar characteristics. Water samples were collected in four distinct seasons to evaluate temperature, pH, dissolved oxygen (DO) concentration, five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), electrical conductivity (EC), chloride ion (Cl−) concentration, total alkalinity (TA), turbidity, total dissolved solids (TDS) concentration, total suspended solids (TSS) concentration, and total hardness (TH) using standard methods. The analytical results revealed that 40% of water quality indices were within the permissible limits suggested by different agencies, with the exception of EC, Cl− concentration, TA, turbidity, DO concentration, BOD5, and COD in all seasons. Statistical analyses indicated that 52% of the contrasts were significantly different at a 95% confidence interval. The factor analysis presented the best fit among the parameters, with four factors explaining 94.29% of the total variance. TDS, BOD5, COD, EC, turbidity, DO, and Cl− were mainly responsible for pollution loading and were caused by the significant amount of industrial discharge and toxicological compounds. The cluster analysis showed the seasonal change in surface water quality, which is usually an indicator of pollution from rainfall or other sources. However, the values of different physicochemical properties varied with seasons, and the highest values of pollutants were recorded in the winter. With the change in seasonal temperature and increase in rainfall, the seasonal Turag River water followed a self-refining trend as follows: rainy season > pre-winter > summer > winter.
To assess the magnitude of water quality decline in the Turag River of Bangladesh, this study examined the seasonal variation of physicochemical parameters of water, identified potential pollution sources, and clustered the monitoring months with similar characteristics. Water samples were collected in four distinct seasons to evaluate temperature, pH, dissolved oxygen (DO) concentration, five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), electrical conductivity (EC), chloride ion (Cl−) concentration, total alkalinity (TA), turbidity, total dissolved solids (TDS) concentration, total suspended solids (TSS) concentration, and total hardness (TH) using standard methods. The analytical results revealed that 40% of water quality indices were within the permissible limits suggested by different agencies, with the exception of EC, Cl− concentration, TA, turbidity, DO concentration, BOD5, and COD in all seasons. Statistical analyses indicated that 52% of the contrasts were significantly different at a 95% confidence interval. The factor analysis presented the best fit among the parameters, with four factors explaining 94.29% of the total variance. TDS, BOD5, COD, EC, turbidity, DO, and Cl− were mainly responsible for pollution loading and were caused by the significant amount of industrial discharge and toxicological compounds. The cluster analysis showed the seasonal change in surface water quality, which is usually an indicator of pollution from rainfall or other sources. However, the values of different physicochemical properties varied with seasons, and the highest values of pollutants were recorded in the winter. With the change in seasonal temperature and increase in rainfall, the seasonal Turag River water followed a self-refining trend as follows: rainy season > pre-winter > summer > winter.
2020, 13(3): 202-213.
doi: 10.1016/j.wse.2020.09.007
摘要:
In this experiment, cobalt ferrite-supported activated carbon (CF-AC) was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II) ions from tannery wastewater. Batch adsorption was carried out to evaluate the effect of experimental operating conditions (pH of solution, contact time, adsorbent dose, and temperature), and the removal efficiencies of Cr and Pb(II) ions by the developed adsorbents were calculated and recorded for all experimental conditions. These variables were estimated and reported as removal efficiencies of 98.2% for Cr and 96.4% for Pb(II) ions at the optimal conditions of 5, 0.8 g, 80 min, and 333 K for pH, adsorbent dose, contact time, and temperature, respectively. The equilibrium for the sorption of Cr and Pb(II) ions was studied using four widely used isotherm models (the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models). It was found that the Freundlich isotherm model fit better with the coefficient of determination (R2) of 0.948 4 and a small sum of square error of 0.000 6. The maximum adsorption capacities (Qm) of Pb(II) and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g, respectively. The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals. The thermodynamic parameters showed that adsorption of Cr and Pb(II) ions onto CF-AC was spontaneous, feasible, and endothermic under the studied conditions. The mean adsorption energy (E) values revealed that the adsorption mechanism of Cr and Pb(II) by CF-AC is physical in nature. The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent, for removal of Cr and Pb(II) ions in tannery wastewater.
In this experiment, cobalt ferrite-supported activated carbon (CF-AC) was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II) ions from tannery wastewater. Batch adsorption was carried out to evaluate the effect of experimental operating conditions (pH of solution, contact time, adsorbent dose, and temperature), and the removal efficiencies of Cr and Pb(II) ions by the developed adsorbents were calculated and recorded for all experimental conditions. These variables were estimated and reported as removal efficiencies of 98.2% for Cr and 96.4% for Pb(II) ions at the optimal conditions of 5, 0.8 g, 80 min, and 333 K for pH, adsorbent dose, contact time, and temperature, respectively. The equilibrium for the sorption of Cr and Pb(II) ions was studied using four widely used isotherm models (the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models). It was found that the Freundlich isotherm model fit better with the coefficient of determination (R2) of 0.948 4 and a small sum of square error of 0.000 6. The maximum adsorption capacities (Qm) of Pb(II) and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g, respectively. The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals. The thermodynamic parameters showed that adsorption of Cr and Pb(II) ions onto CF-AC was spontaneous, feasible, and endothermic under the studied conditions. The mean adsorption energy (E) values revealed that the adsorption mechanism of Cr and Pb(II) by CF-AC is physical in nature. The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent, for removal of Cr and Pb(II) ions in tannery wastewater.
2016, 9(1): 58-66.
doi: 10.1016/j.wse.2016.02.002
摘要:
This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.
This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.
2019, 12(1): 11-18.
doi: 10.1016/j.wse.2019.03.001
摘要:
Hydraulic models for the generation of ?ood inundation maps are not commonly applied in mountain river basins because of the dif?culty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of ?ood inundation maps. The study area covers a 5-km reach of the Santa Barbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and ?ood extent, in terms of the mean absolute difference and measure of ?t. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for ?ood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty.
Hydraulic models for the generation of ?ood inundation maps are not commonly applied in mountain river basins because of the dif?culty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of ?ood inundation maps. The study area covers a 5-km reach of the Santa Barbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and ?ood extent, in terms of the mean absolute difference and measure of ?t. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for ?ood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty.
2019, 12(1): 27-36.
doi: 10.1016/j.wse.2019.04.003
摘要:
This study aimed to investigate the biosorption potential of Na2CO3-modified Aloe barbadensis Miller (Aloe vera) leaf (MABL) powder for removal of Ni(II) ions from a synthetic aqueous solution. Effects of various process parameters (pH, equilibrium time, and temperature) were investigated in order to optimize the biosorptive removal. The maximum biosorption capacity of MABL was observed to be 28.986 mg/g at a temperature of 303 K, a biosorbent dose of 0.6 g, a contact time of 90 min, and a pH value of 7. Different kinetic models (the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models) were evaluated. The pseudo-second-order kinetic model was found to be the best fitted model in this study, with a coefficient of determination of R2 = 0.974. Five different isotherm models (the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Brunauer-Emmett-Teller (BET) models) were investigated to identify the best-suited isotherm model for the present system. Based on the minimum chi-square value (χ2 = 0.027) and the maximum coefficient of determination (R2 = 0.996), the Langmuir isotherm model was found to represent the system well, indicating the possibility of monolayer biosorption. The sticking probability (S*) was found to be 0.41, suggesting a physisorption mechanism for biosorption of Ni(II) on MABL. The biosorbent was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, and BET surface area, in order to understand its morphological and functional characteristics.
This study aimed to investigate the biosorption potential of Na2CO3-modified Aloe barbadensis Miller (Aloe vera) leaf (MABL) powder for removal of Ni(II) ions from a synthetic aqueous solution. Effects of various process parameters (pH, equilibrium time, and temperature) were investigated in order to optimize the biosorptive removal. The maximum biosorption capacity of MABL was observed to be 28.986 mg/g at a temperature of 303 K, a biosorbent dose of 0.6 g, a contact time of 90 min, and a pH value of 7. Different kinetic models (the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models) were evaluated. The pseudo-second-order kinetic model was found to be the best fitted model in this study, with a coefficient of determination of R2 = 0.974. Five different isotherm models (the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Brunauer-Emmett-Teller (BET) models) were investigated to identify the best-suited isotherm model for the present system. Based on the minimum chi-square value (χ2 = 0.027) and the maximum coefficient of determination (R2 = 0.996), the Langmuir isotherm model was found to represent the system well, indicating the possibility of monolayer biosorption. The sticking probability (S*) was found to be 0.41, suggesting a physisorption mechanism for biosorption of Ni(II) on MABL. The biosorbent was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, and BET surface area, in order to understand its morphological and functional characteristics.
2019, 12(1): 45-54.
doi: 10.1016/j.wse.2018.11.001
摘要:
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling
water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the
adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more
suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being
trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO)
and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood
River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and
gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved
solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using
SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with
ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters.
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling
water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the
adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more
suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being
trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO)
and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood
River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and
gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved
solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using
SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with
ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters.
2020, 13(2): 136-144.
doi: 10.1016/j.wse.2020.06.005
摘要:
Based on conventional particle swarm optimization (PSO), this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight (ARIW) strategy, referred to as the ARIW-PSO algorithm, to build a multi-objective optimization model for reservoir operation. Using the triangular probability density function, the inertia weight is randomly generated, and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution, which is suitable for global searches. In the evolution process, the inertia weight gradually decreases, which is beneficial to local searches. The performance of the ARIW-PSO algorithm was investigated with some classical test functions, and the results were compared with those of the genetic algorithm (GA), the conventional PSO, and other improved PSO methods. Then, the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China, including the Panjiakou Reservoir, Daheiting Reservoir, and Taolinkou Reservoir. The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.
Based on conventional particle swarm optimization (PSO), this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight (ARIW) strategy, referred to as the ARIW-PSO algorithm, to build a multi-objective optimization model for reservoir operation. Using the triangular probability density function, the inertia weight is randomly generated, and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution, which is suitable for global searches. In the evolution process, the inertia weight gradually decreases, which is beneficial to local searches. The performance of the ARIW-PSO algorithm was investigated with some classical test functions, and the results were compared with those of the genetic algorithm (GA), the conventional PSO, and other improved PSO methods. Then, the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China, including the Panjiakou Reservoir, Daheiting Reservoir, and Taolinkou Reservoir. The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.
2016, 9(1): 33-41.
doi: 10.1016/j.wse.2016.02.003
摘要:
The southern coast of the Gulf of Maine in the United States is prone to flooding caused by nor’easters. A state-of-the-art fully-coupled model, the Simulating WAves Nearshore (SWAN) model with unstructured grids and the ADvanced CIRCulation (ADCIRC) model, was used to study the hydrodynamic response in the Gulf of Maine during the Patriot’s Day storm of 2007, a notable example of nor’easters in this area. The model predictions agree well with the observed tide-surges and waves during this storm event. Waves and circulation in the Gulf of Maine were analyzed. The Georges Bank plays an important role in dissipating wave energy through the bottom friction when waves propagate over the bank from offshore to the inner gulf due to its shallow bathymetry. Wave energy dissipation results in decreasing significant wave height (SWH) in the cross-bank direction and wave radiation stress gradient, which in turn induces changes in currents. While the tidal currents are dominant over the Georges Bank and in the Bay of Fundy, the residual currents generated by the meteorological forcing and waves are significant over the Georges Bank and in the coastal area and can reach 0.3 m/s and 0.2 m/s, respectively. In the vicinity of the coast, the longshore current generated by the surface wind stress and wave radiation stress acting parallel to the coastline is inversely proportional to the water depth and will eventually be limited by the bottom friction. The storm surge level reaches 0.8 m along the western periphery of the Gulf of Maine while the wave set-up due to radiation stress variation reaches 0.2 m. Therefore, it is significant to coastal flooding.
The southern coast of the Gulf of Maine in the United States is prone to flooding caused by nor’easters. A state-of-the-art fully-coupled model, the Simulating WAves Nearshore (SWAN) model with unstructured grids and the ADvanced CIRCulation (ADCIRC) model, was used to study the hydrodynamic response in the Gulf of Maine during the Patriot’s Day storm of 2007, a notable example of nor’easters in this area. The model predictions agree well with the observed tide-surges and waves during this storm event. Waves and circulation in the Gulf of Maine were analyzed. The Georges Bank plays an important role in dissipating wave energy through the bottom friction when waves propagate over the bank from offshore to the inner gulf due to its shallow bathymetry. Wave energy dissipation results in decreasing significant wave height (SWH) in the cross-bank direction and wave radiation stress gradient, which in turn induces changes in currents. While the tidal currents are dominant over the Georges Bank and in the Bay of Fundy, the residual currents generated by the meteorological forcing and waves are significant over the Georges Bank and in the coastal area and can reach 0.3 m/s and 0.2 m/s, respectively. In the vicinity of the coast, the longshore current generated by the surface wind stress and wave radiation stress acting parallel to the coastline is inversely proportional to the water depth and will eventually be limited by the bottom friction. The storm surge level reaches 0.8 m along the western periphery of the Gulf of Maine while the wave set-up due to radiation stress variation reaches 0.2 m. Therefore, it is significant to coastal flooding.
2022, 15(1): 29-39.
doi: 10.1016/j.wse.2021.12.006
摘要:
In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.
In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.
2008, 1(1): 37-43 .
doi: 10.3882/j.issn.1674-2370.2008.01.005
Abstract:
2011, 4(1): 101-109.
doi: 10.3882/j.issn.1674-2370.2011.01.010
Abstract:
2011, 4(3): 258-269.
doi: 10.3882/j.issn.1674-2370.2011.03.003
Abstract:
2012, 5(3): 243-258.
doi: 10.3882/j.issn.1674-2370.2012.03.001
Abstract:
2010, 3(3): 321-330.
doi: 10.3882/j.issn.1674-2370.2010.03.008
Abstract:
2012, 5(1): 26-33.
doi: 10.3882/j.issn.1674-2370.2012.01.003
Abstract:
- Top Download
- Top Click
1
2008, 1(1): 37-43 .
doi: 10.3882/j.issn.1674-2370.2008.01.005
2
2011, 4(1): 101-109.
doi: 10.3882/j.issn.1674-2370.2011.01.010
3
2011, 4(3): 258-269.
doi: 10.3882/j.issn.1674-2370.2011.03.003
4
2012, 5(3): 243-258.
doi: 10.3882/j.issn.1674-2370.2012.03.001
5
2010, 3(3): 321-330.
doi: 10.3882/j.issn.1674-2370.2010.03.008
6
2012, 5(1): 26-33.
doi: 10.3882/j.issn.1674-2370.2012.01.003
1
2010, 3(2): 132-143.
doi: 10.3882/j.issn.1674-2370.2010.02.002
2
2010, 3(3): 241-256.
doi: 10.3882/j.issn.1674-2370.2010.03.001
3
2011, 4(1): 101-109.
doi: 10.3882/j.issn.1674-2370.2011.01.010
4
2010, 3(4): 418-430.
doi: 10.3882/j.issn.1674-2370.2010.04.005
5
2010, 3(1): 1-13.
doi: 10.3882/j.issn.1674-2370.2010.01.001
6
2012, 5(1): 105-119.
doi: 10.3882/j.issn.1674-2370.2012.01.010
Volume 18,Issue 2,
Jun. 2025
Editor-in-ChiefChao Wang
Edited byEditorial Board of Water Science and Engineering
Distributed byEditorial Office of Water Science and Engineering
News
- WSE Special Issue on Security and Sustainability for Hydraulic Structures November 01,2021
- WSE Special Issue on Water Security and Sustainability April 14,2021
- WSE Special Issue for CORE2021 March 09,2021
