2015 Vol. 8, No. 3

Display Method:
Abstract:
This paper first visits uniqueness, scale, and resolution issues in groundwater flow forward modeling problems. It then makes the point that non-unique solutions to groundwater flow inverse problems arise from a lack of information necessary to make the problems well defined. Subsequently, it presents the necessary conditions for a well-defined inverse problem. They are full specifications of (1) flux boundaries and sources/sinks, and (2) heads everywhere in the domain at at least three times (one of which is t = 0), with head change everywhere at those times must being nonzero for transient flow. Numerical experiments are presented to corroborate the fact that, once the necessary conditions are met, the inverse problem has a unique solution. We also demonstrate that measurement noise, instability, and sensitivity are issues related to solution techniques rather than the inverse problems themselves. In addition, we show that a mathematically well-defined inverse problem, based on an equivalent homogeneous or a layered conceptual model, may yield physically incorrect and scenario-dependent parameter values. These issues are attributed to inconsistency between the scale of the head observed and that implied by these models. Such issues can be reduced only if a sufficiently large number of observation wells are used in the equivalent homogeneous domain or each layer. With a large number of wells, we then show that increase in parameterization can lead to a higher-resolution depiction of heterogeneity if an appropriate inverse methodology is used. Furthermore, we illustrate that, using the same number of wells, a highly parameterized model in conjunction with hydraulic tomography can yield better characterization of the aquifer and minimize the scale and scenario-dependent problems. Lastly, benefits of the highly parameterized model and hydraulic tomography are tested according to their ability to improve predictions of aquifer responses induced by independent stresses not used in the inverse modeling efforts.
Abstract:
Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of flash flood hazard mapping. In this study, the headwater catchment of the Xiapu River Basin in central China was selected as a pilot study area for flash flood hazard mapping. A conceptual distributed hydrological model was developed for flood calculation based on the framework of the Xinanjiang model, which is widely used in humid and semi-humid regions in China. The developed model employs the geomorphological unit hydrograph method, which is extremely valuable when simulating the overland flow process in ungauged catchments, as compared with the original Xinanjiang model. The model was tested in the pilot study area, and the results agree with the measured data on the whole. After calibration and validation, the model is shown to be a useful tool for flash flood calculation. A practicable method for flash flood hazard mapping using the calculated peak discharge and digital elevation model data was presented, and three levels of flood hazards were classified. The resulting flash flood hazard maps indicate that the method successfully predicts the spatial distribution of flash flood hazards, and it can meet the current requirements in China.
Abstract:
In order to scientifically and reasonably evaluate water use efficiency and benefits in irrigation districts, a variable fuzzy assessment model was established. The model can reasonably determine the relative membership degree and relative membership function of the sample indices in each index’s standard interval, and obtain the evaluation level of the sample through the change of model parameters. According to the actual situation of the Beitun Irrigation District, which is located in Fuhai County, in Altay City, Xinjiang Uyghur Autonomous Region, five indices were selected as evaluation factors, including the canal water utilization coefficient, field water utilization coefficient, crop water productivity, effective irrigation rate in farmland, and water-saving irrigation area ratio. The water use efficiency and benefits in the Beitun Irrigation District in different years were evaluated with the model. The results showed that the comprehensive evaluation indices from 2006 to 2008 were all at the third level (medium efficiency), while the index in 2009 increased slightly, falling between the second level (relatively high efficiency) and third level, indicating an improvement in the water use efficiency and benefits in the Beitun Irrigation District, which in turn showed that the model was reliable and easy to use. This model can be used to assess the water use efficiency and benefits in similar irrigation districts.
Abstract:
A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry’s constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry’s constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry’s constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.
Abstract:
A two-layer mathematical model proposed by Tong et al. (2010) was used to predict soluble chemical transfer from soil into surface runoff with ponded water on the soil surface. Infiltration-related incomplete mixing parameter   and runoff-related incomplete mixing parameter   in the analytical solution of the Tong et al. (2010) model were assumed to be constant. In this study, different laboratory experimental data of soluble chemical concentration in surface runoff from initially unsaturated and saturated soils were used to identify the variables   and   based on the analytical solution of the model. The values of   and   without occurrence of surface runoff were constant and equal to their values at the moment when the surface runoff started. It was determined from the results that   decreases with the increase of the ponded water depth, and when the initial volumetric water content is closer to the saturated water content, there is less variation of parameter   after the occurrence of surface runoff. As infiltration increases, the soluble chemical concentration in surface runoff decreases. The values of parameter   range from 0 to 1 for the fine loam and sand under the controlled infiltration conditions, while it can increase to a very large value, greater than 1, for the sand under the restrained infiltration conditions, and the analytical solution of the model is not valid for experimental soil without any infiltration if   is expected to be less than or equal to 1. The soluble chemical concentrations predicted from the model with variable incomplete mixing parameters   and   are more accurate than with from constant   and   values.
Abstract:
Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the removal of Cr(Ⅵ) in aqueous solutions. The effects of adsorbent dosage, the concentration of Cr(Ⅵ) in aqueous solution, temperature, and pH value on the removal efficiency were studied. Results showed that the adsorption capacity of the magnetic multi-wall carbon nanotubes increased with the initial Cr(Ⅵ) concentration, but decreased with the increase of adsorbent dosage. The adsorption amount increased with contact time. The adsorption kinetics were best represented by the pseudo second-order kinetic model, and the adsorption isotherms indicated that the Langmuir model better reflected the adsorption process. The obtained calculation results for the Gibbs free energy revealed that the adsorption was a spontaneous and endothermic process. The enthalpy deviation was 3.835 kJ·mol-1. The magnetic multi-wall carbon nanotubes showed significant potential for application in adsorption of heavy metal ions.
Abstract:
The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis) spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.
Abstract:
A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth-order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge-Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.
Abstract:
Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.
Abstract:
In order to study the feasibility of modified sewage sludge as landfill cover material and its performance in a complex landfill environment, strength and hydraulic conductivity tests were conducted. The permeability requirements for daily and interim covers were analyzed first. Based on saturated-unsaturated seepage calculations, it is suggested that approximately 1.0 × 10-4 cm/s and 1.0 × 10-5 cm/s are the appropriate values for the hydraulic conductivities of daily and interim covers, respectively. The strength and permeability requirements of the mixtures, when used as an interim cover, can be met at a sludge:lime:cement:silt:tire-derived aggregate (TDA) weight ratio of 100:15:5:70:15. Results also demonstrate that the solid content ratio of modified sewage sludge, which should be greater than 60% when modified sewage sludge is used as a temporary cover material, is crucial to both strength and hydraulic performance. In addition, as the duration of soaking of modified sewage sludge in synthetic leachate increases, the unconfined compressive strength increases, and the hydraulic conductivity decreases slightly or fluctuates between 1.0 × 10-5 cm/s and 1.0 × 10-6 cm/s, still meeting the requirements for an interim cover. The reduction in hydraulic conductivity of modified sewage sludge under the effect of synthetic leachate, as well as the long-term and environmental performance of the modified sewage sludge, should be examined in future studies.