2018 Vol. 11, No. 1

Display Method:
Abstract:
In this study, a statistical model was established to estimate the groundwater table using precipitation, evaporation, the river stage of the Liangduo River, and the tide level of the Yellow Sea, as well as to predict the groundwater table with easily measurable climate data in a coastal plain in eastern China. To achieve these objectives, groundwater table data from twelve wells in a farmland covering an area of 50 m  150 m were measured over a 12-month period in 2013 in Dongtai City, Jiangsu Province. Trend analysis and correlation analysis were conducted to study the patterns of changes in the groundwater table. In addition, a linear regression model was established and regression analysis was conducted to understand the relationships between precipitation, evaporation, river stage, tide level, and groundwater table. The results are as follows: (1) The groundwater table was strongly affected by climate factors (e.g., precipitation and evaporation), and river stage was also a significant factor affecting the groundwater table in the study area ( p < 0.01, where p is the probability value). (2) The groundwater table was especially sensitive to precipitation. The significance of the factors of the groundwater table were ranked in the following descending order: precipitation, evaporation, and river stage. (3) A triple linear regression model of the groundwater table, precipitation, evaporation, and river stage was established. The linear relationship between the groundwater table and the main factors was satisfied by the actual values versus the simulated values of the groundwater table (R2 ? 0.841, where R2 is the coefficient of determination).
Abstract:
Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to determine the number, location, and capacity of instream aeration stations (IASs) needed to meet DO standards in combination with other pollution control measures. DO concentrations have been improved in the North Shore Channel and North Branch Chicago River by the Devon Avenue IAS for more than 35 years. A study was initiated to determine whether it was better to rehabilitate or relocate this station and to determine appropriate operational guidance for the IAS at the selected location. A water quality model capable of simulating DO concentrations during unsteady flow was used to evaluate the proper location for an IAS and operational guidance for this IAS. Three test years, a dry year, a wet year, and an extreme year, were considered in the evaluation. The study found that the Devon Avenue IAS should be rehabilitated as this location performed as well as or better than any of 10 alternative locations. According to the new operational guidance for this IAS, the amount of time with blowers operating could be substantially reduced compared to traditional operations while at the same time the time attaining the DO standards could be increased. This study shows that a carefully designed modeling study is key to effective selection, location, and operation of IASs such that attainment of DO standards can be maximized while operation hours of blowers can be minimized.
Abstract:
Through a series of experiments using denitrifying phosphorus-accumulating sludge in sequencing batch reactors (SBRs), the variations of the intracellular polymers during the anaerobic phosphorus release process at different pH values were compared, the probable reasons for different performances of phosphorus removal were examined, and system operations in a typical cycle were investigated. The results show that the phosphorus removal rate was positively correlated with pH values in a range of 6.5 to 8.5. When the pH value was 8.0, the anaerobic phosphorus release rate and anoxic phosphorus uptake rate of the activated sludge were 20.95 mg/(g?h) and 23.29 mg/(g?h), respectively; the mass fraction of poly-β-hydroxybutyrate (PHB) increased to 62.87 mg/g under anaerobic conditions; the mass fraction of polyphosphate was 92.67 mg/g under anoxic conditions; and the effluent concentration of TP was 1.47 mg/L. With the increase of pH, the mass fraction of acetic acid and PHB also increased, and the absorption rate of acetic acid was equal to the disintegration rate of polyphosphate. When the pH value was above 8.0, biological phosphorus removal was achieved by chemical phosphorus precipitation, and the phosphorus removal rate decreased.
Abstract:
In view of the severity of oceanic pollution, based on the finite volume coastal ocean model (FVCOM), a Lagrangian particle-tracking model was used to numerically investigate the coastal pollution transport and water exchange capability in Tangdao Bay, in China. The severe pollution in the bay was numerically simulated by releasing and tracking particles inside it. The simulation results demonstrate that the water exchange capability in the bay is very low. Once the bay has suffered pollution, a long period will be required before the environment can purify itself. In order to eliminate or at least reduce the pollution level, environmental improvement measures have been proposed to enhance the seawater exchange capability and speed up the water purification inside the bay. The study findings presented in this paper are believed to be instructive and useful for future environmental policy makers and it is also anticipated that the numerical model in this paper can serve as an effective technological tool to study many emerging coastal environment problems.
Abstract:
Studies on the relationship between plant nitrogen content and soil nitrogen reduction under elevated CO2 conditions and with different nitrogen additions in wetland ecosystems are lacking. This study was meant to assess the effects of elevated CO2 concentrations and inorganic nitrogen additions on soil and plant nitrogen cycling. A cultured riparian wetland, alligator weeds, and two duplicated open top chambers (OTCs) with ambient (380 μmol/mol) and elevated (700 μmol/mol) CO2 concentrations at low (4 mg/L) and high (6 mg/L) nitrogen fertilization levels were used. The total plant biomass increased by 30.77% and 31.37% at low and high nitrogen fertilization levels, respectively, under elevated CO2 conditions. Plant nitrogen content decreased by 6.54% and 8.86% at low and high nitrogen fertilization levels, respectively. The coefficient of determination (R2) of soil nitrogen contents ranged from 0.81 to 0.96. Under elevated CO2 conditions, plants utilized the assimilated inorganic nitrogen (from the soil) for growth and other internal physiological transformations, which might explain the reduction in plant nitrogen content. A reduction in soil dissolved inorganic nitrogen (DIN) under elevated CO2 conditions might have also caused the reduction in plant nitrogen content. Reduced plant and soil nitrogen contents are to be expected due to the potential exhaustive use of inorganic nitrogen by soil microorganisms even before it can be made available to the soil and plants. The results from this study provide important information to help policy makers make informed decisions on sustainable management of wetlands. Larger-scale field work is recommended in future research.
Abstract:
A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models.
Abstract:
Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%e37% with different collar widths.
Abstract:
Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation prediction models seldom consider uncertainties. In this study, a cloud-Verhulst hybrid prediction model was established by combing a cloud model with the Verhulst model. The expectation, one of the cloud characteristic parameters, was obtained using the Verhulst model, and the other two cloud characteristic parameters, entropy and hyper-entropy, were calculated by introducing inertia weight. The hybrid prediction model was used to predict the dam deformation in a hydroelectric project. Comparison of the prediction results of the hybrid prediction model with those of a traditional statistical model and the monitoring values shows that the proposed model has higher prediction accuracy than the traditional statistical model. It provides a new approach to predicting dam deformation under uncertain conditions.
Abstract:
A two-dimensional (2D) dam-break flow numerical model was developed based on the finite-volume total variation diminishing (TVD) and monotone upstream-centered scheme for conservation laws (MUSCL)-Hancock scheme, which has second-order accuracy in both time and space. A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver was used to evaluate fluxes. The TVD MUSCL-Hancock numerical scheme utilizes slope limiters, such as the minmod, double minmod, superbee, van Albada, and van Leer limiters, to prevent spurious oscillations and maintain monotonicity near discontinuities. A comparative study of the impact of various slope limiters on the accuracy of the numerical flow model was conducted with several dam-break examples including wet and dry bed cases. The numerical results of the superbee and double minmod limiters agree better with the theoretical solution and have higher accuracy than other limiters in one-dimensional (1D) space. The ratio of the downstream water depth to the upstream water depth was used to select the proper slope limiter. For the 2D numerical model, the superbee limiter should not be used, owing to significant numerical dispersion.
Abstract:
Weirs are a type of hydraulic structure, used for water level adjustment, flow measurement, and diversion of water in irrigation systems. In this study, experiments were conducted on sharp-crested weirs under free-flow conditions and an optimization method was used to determine the best form of the discharge coefficient equation based on the coefficient of determination (R2) and root mean square error (RMSE). The ability of the numerical method to simulate the flow over the weir was also investigated using Fluent software. Results showed that, with an increase of the ratio of the head over the weir crest to the weir height (h/P), the discharge coefficient decreased nonlinearly and reached a constant value of 0.7 for h/P > 0.6. The best form of the discharge coefficient equation predicted the discharge coefficient well and percent errors were within a ±5% error limit. Numerical results of the discharge coefficient showed strong agreement with the experimental data. Variation of the discharge coefficient with Reynolds numbers showed that the discharge coefficient reached a constant value of 0.7 when h/P > 0.6 and Re > 20000.
Abstract:
Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0 to 1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33 to 0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00 m to 187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.