Abstract: The snowmelt runoff model (SRM) has been widely used in simulation and forecast of streamflow in snow-dominated mountainous basins around the world. This paper presents an overall review of worldwide applications of SRM in mountainous watersheds, particularly in data-sparse watersheds of northwestern China. Issues related to proper selection of input climate variables and parameters, and determination of the snow cover area (SCA) using remote sensing data in snowmelt runoff modeling are discussed through extensive review of literature. Preliminary applications of SRM in northwestern China have shown that the model accuracies are relatively acceptable although most of the watersheds lack measured hydro-meteorological data. Future research could explore the feasibility of modeling snowmelt runoff in data-sparse mountainous watersheds in northwestern China by utilizing snow and glacier cover remote sensing data, geographic information system (GIS) tools, field measurements, and innovative ways of model parameterization.
Abstract: Evaporation, which is an important factor in the water balance at the basin scale, is a critical variable in the determination of local available water resources. Since the potential evaporation is mainly influenced by meteorological variables, it is necessary to investigate the extent to which different meteorological variables affect the potential evaporation. The aim of this study was to explore the variation trends of different meteorological variables, and their impacts on the potential evaporation. This study selected the Hailar Meteorological Station of the Hailar region, which is situated in a cold, semi-arid, and sub-humid region, as a case study site. Based on observed daily meteorological data from 1951 to 2009, the potential evaporation was calculated with the Penman formula, and the variations of meteorological variables were investigated with the nonparametric Mann-Kendall test. The correlation between the potential evaporation and each meteorological variable at annual and seasonal scales was also analyzed. The results show that the annual and seasonal potential evaporation and air temperature present increasing trends, whereas the wind speed, sunshine duration, and relative humidity present decreasing trends. Among the meteorological variables, the air temperature and relative humidity are the key factors that affect potential evaporation at different time scales, and the impacts of other meteorological variables on the potential evaporation are not significant and vary with time scales.
Abstract: The freshwater fish Carassius auratus was chosen as an experimental subject, and their hepatic biochemical responses to the medium-term exposure of Benzo(k)fluoranthene (BkF) alone and in combination with PCB118 and dichlorodiphenyltrichloroethane (DDT) were investigated by measuring the reduced glutathione (GSH), glutathione S-transferase (GST), and thiobarbituric acid reactive substances (TBARS), to assess sublethal effects. The hepatic GSH content was significantly inhibited by organic pollutants, alone and in mixtures, while the TBARS content was significantly induced after three days of exposure. Bell-shaped concentration-response charts of GST activities were obtained. Significant dose-response relationships were found for hepatic GSH and TBARS contents of all concentrations and for the GST activity, except at the highest concentration. The GSH content, GST activity, and TBARS content in Carassius auratus were confirmed as useful biomarkers of exposure to organic pollutions.
Abstract: The degradation efficiencies and mechanism of ozonation for the degradation of sodium acetate in aqueous solution were investigated under atmospheric pressure at room temperature (293 K). The effects of the initial pH value, reaction time, and concentrations of, , CaCl2, and Ca(OH)2 on the removal rate of chemical oxygen demand (COD) were studied. The results indicated that ozonation obviously improved the degradation rate of sodium acetate when the pH value of the solution was not less than 8.5. A suitable long reaction time may be helpful in increasing the COD removal rate, and a removal rate of 36.36% can be obtained after a 30-minute treatment. The COD removal rate increased firstly and decreased subsequently with the increase of the concentration (from 0 to 200 mg/L), and under the same experimental condition it reached the optimum 34.66% at the concentration of 100 mg/L. The COD removal rate was 5.26% lower when the concentration of was 200 mg/L than when there was no . The COD removal rate decreased by 15.68% when the concentration increased from 0 to 200 mg/L. has a more obvious scavenging effect in inhibiting the formation of hydroxyl radicals than . CaCl2 and Ca(OH)2 could increase the degradation efficiency of sodium acetate greatly, and the COD removal rates reached 65.73% and 83.46%, respectively, after a 30-minute treatment, 29.37% and 47.10% higher, respectively, than with single ozone oxidation. It was proved that the degradation of sodium acetate in the ozonation process followed the mechanism of oxidization with hydroxyl free radicals (·OH).
Abstract: Sea level variability in the East China Sea (ECS) was examined based primarily on the analysis of TOPEX/Poseidon altimetry data and tide gauge data as well as numerical simulation with the Princeton ocean model (POM). It is concluded that the inter-annual sea level variation in the ECS is negatively correlated with the ENSO index, and that the impact is more apparent in the southern area than in the northern area. Both data analysis and numerical model results also show that the sea level was lower during the typical El Niño period of 1997 to 1998. El Niño also causes the decrease of the annual sea level variation range in the ECS. This phenomenon is especially evident in the southern ECS. The impacts of wind stress and ocean circulation on the sea level variation in the ECS are also discussed in this paper. It is found that the wind stress most strongly affecting the sea level was in the directions of 70º and 20º south of east, respectively, over the northern and southern areas of the ECS. The northwest wind is particularly strong when El Niño occurs, and sea water is transported southeastward, which lowers the sea level in the southern ECS. The sea level variation in the southern ECS is also significantly affected by the strengthening of the Kuroshio. During the strengthening period of the Kuroshio, the sea level in the ECS usually drops, while the sea level rises when the Kuroshio weakens.
Abstract: This study is motivated by recognition of complex sandbar evolution patterns under wave actions inside the surf zone. A series of physical model experiments were conducted in a wave flume to investigate sandbar migration under various wave conditions, including wave groups, regular waves, and random waves. It was observed that under certain wave conditions sandbars move alternately shoreward and seaward rather than continuously in the same direction. The measurements show that the unstable movement of sandbars is closely related to the amplitude modulation of waves. Smaller amplitude modulation tends to produce more intense unstable bar movements. Data analysis further shows that the sandbar migration does not seem to be a passive response of the sea bed to wave forcing, but is most likely caused by the feedback interaction between waves and bed topography.
Abstract: The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mechanisms of overland flow. Four tillage practices, including cropland raking, artificial hoeing, artificial digging, and straight slopes, were considered based on the local agricultural conditions to simulate different values of soil surface roughness in the Loess Plateau. The objective of this study was to investigate the relationship between the soil surface roughness and hydraulic roughness coefficient on sloping farmland using artificial rainfall simulation. On a slope with a gradient of 10°, a significant logarithmic function was developed between the soil surface roughness and Manning’s roughness coefficient, and an exponential function was derived to describe the relationship between the soil surface roughness and Reynolds number. On the slope with a gradient of 15°, a significant power function was developed to reflect the relationship between the soil surface roughness and Manning’s roughness coefficient, and a linear function was derived to relate the soil surface roughness to the Reynolds number. These findings can provide alternative ways to estimate the hydraulic roughness coefficient for different types of soil surface roughness.
Abstract: In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remove the effect of the background noise of images and to enhance the high-frequency component of the original image, image smoothing and image sharpening methods are introduced. Depending on the correct threshold, the image binarization processing is particularly useful for estimating stained non-wetting phase saturation. Calculated saturation data are compared with the measured saturation data during the two-phase flow experiment in an artificial steel planar porous media model. The results show that the calculated saturation data agree with the measured ones. With the help of an artificial steel planar porous media model, digital image processing is an accurate and simple method for obtaining the stained non-wetting phase saturation.
Abstract: Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact zones of the Xiaowan ultra-high arch dam. The principles of monitoring layout and design are introduced in detail. Prototype monitoring shows that the increment of the interfacial compressive stress is much larger in the impoundment stage than in the regulating stage. The water pressure and time-effect are two main factors affecting the interfacial stress. The time-effect is the key factor in the initial impoundment stage, and the water pressure is the key factor after impoundment. The contact properties are significantly improved by grouting. This study shows that there are three typical stages in the joint opening hydrographs, namely the compression stage, opening stage, and stable stage. There is a nonlinear relationship between the joint opening and temperature, which can be well described by the S-function. In conclusion, the reinforcement effect is satisfying, and the abutment is safe.
Abstract: This paper presents new experimental data of the erosion rate and sediment transport rate during the processes of dam break caused by overtopping. In order to study the headcut migration, the erosion coefficient was calculated and its peak value was determined near the downstream edge of the dam crest. Then the characteristics of vertical erosion during dam break processes were analyzed by dividing the dam into three regions: the upstream region, middle region, and downstream region. The three regions show different features during headcut migration, but all are exposed to the most intense erosion at the third stage of the dam break process. Finally, three relevant parameters affecting sediment transport were discussed: the length of the dam crest, the inner slope, and the dam composition. The results show that a longer dam crest and flatter inner slope reduce the peak sediment transport rate and prolong the arrival time of peak sediment transport rate; and with the increase of the non-uniformity coefficient S, the peak sediment transport rate initially increases, and then decreases.
Abstract: In order to fully interpret and describe damage mechanics,the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through probability distribution. Three kinds of fuzzy behaviors of damage variableswereformulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely,the half-depressed distribution, swing distribution,and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.