Abstract: To better understand the characteristics and mechanisms of droughts at different drought stages, this study selected the Xiangjiang River Basin in China as the study area, and evaluated soil moisture (SM) at different depths for drought monitoring, through SM data simulated with the variable infiltration capacity (VIC) model. To solve the problem of unreasonable drought/wetness classifications based on the soil moisture anomaly percentage index (SMAPI), an improved soil moisture anomaly percentage index (ISMAPI) was developed by introducing the Box-Cox transformation. The drought/wetness frequency generated by ISMAPI demonstrated preferable spatial comparability in comparison with those from SMAPI. The lag time of ISMAPI relative to the standardized precipitation evapotranspiration index was closely related to soil depth, and was characterized by a fast response in shallow soil layers and a relatively slow response in deep soil layers. SM in shallow soil layers provided a measure for monitoring short-term droughts, whereas SM in deep soil layers provided a better measure for long-term persistent drought events. Furthermore, the occurrence and mitigation time of drought events identified by SM in deep soil layers usually lagged behind that identified by SM in shallow soil layers. Compared with deep SM, SM in shallow soil layers responded faster to meteorological anomalies, thereby resulting in shorter periods of SM persistence in shallow soil layers than in deep soil layers. This can explain the differences of SM at different depths in drought monitoring.
Abstract: To improve the accuracy of hydrological simulations in the groundwater overexploitation zone of North China, it is necessary to study the characteristics of shallow aquifer recharge on daily scale. Three shallow aquifer recharge indices were used to quantify shallow aquifer recharge in two ways. The recharge coefficient was used to quantify the amount of shallow aquifer recharge. The recharge duration and water table rise coefficient were used to quantify the recharge temporal process. The Spearman rank correlation coefficient and regression analysis were used to determine the relationships between aquifer water table depth (WTD), rainfall, and shallow aquifer recharge. The Jiangjiang River Basin, a tributary of the Haihe River, was selected as the study area. The results showed that the recharge coefficient first increased, then decreased, and finally leveled off as WTD increased. When WTD was between 5 and 6 m, the recharge coefficient reached its maximum (approximately 0.3). When WTD was greater than 10 m, the recharge coefficient remained stable (around 0.12). With regard to the sources and forms of recharge, preferential flow was dominant in the areas near the extraction wells. In contrast, plug flow became dominant in the areas distant from the wells. With the reduction of rainfall duration, the proportion of preferential flow contributing to aquifer recharge increased. With the increase of rainfall amount, the duration of aquifer recharge lengthened.
Abstract: This study evaluated the influence of the type and dose of coagulants on the removal of 16 polycyclic aromatic hydrocarbons (PAHs) in the coagulation process. The effects of coagulant type and dose in reducing water turbidity, colour, and the total content of organic compounds were also assessed. The surface water samples had the turbidity of 9.3-11.2 NTU and colour of 25-35 mg/L. The content of organic compounds determined with total organic carbon (TOC) was 9.2-12.5 mg/L. For the coagulation process, pre-hydrolyzed polyaluminium chloride (PACl) coagulants with basicity values of 41%, 65%, and 85% were used. This shows that water purification performance increased as the basicity of the coagulant increased. When the coagulant with the highest basicity and a dose of 3 mg Al per litre was used, a removal efficiency of 83% in the concentration of benzo(a)pyrene was achieved, and efficiencies for the remaining 15 PAHs ranged from 80% to 91%. These values were 4%-9% higher than those achieved using other coagulants. The removal efficiencies of turbidity, colour, and TOC were 80%, 60%, and 35%, respectively. The water purification performance, including PAH removal, was improved with the increased coagulant dose. Increasing the coagulant dose had more pronounced effects on PAH removal than on the reduction of turbidity and TOC.
Abstract: A passive sampling method was employed for time-integrative monitoring of five pharmaceuticals and one transformation product (TP) in rivers impacted by sewage treatment plants, in parallel with traditional sampling methods. Target pharmaceuticals, other than naproxen, were detected through passive sampling, with average concentrations in the range of 0.2-5.8 ng/L, and through active sampling, with average concentrations in the range of 0.5-21.7 ng/L. Meanwhile, the ecotoxicological effects of pharmaceuticals and TPs were assessed, including the formation of zebrafish embryos and expression of target genes, upon exposure of zebrafish embryos to sulfadiazine (SDZ) and its TP sulfacetamide, as well as two artificial mixed rivers. The exposure results showed negligible impacts of environmental levels of SDZ, while mimic mixture exposure disturbed the development of embryos and led to the alteration of the socs3, TNF-α, and IL-1β genes. The findings of this study indicated that although pharmaceutical concentrations in rivers receiving treated wastewater are low, the potential ecological effects on the aquatic environment require more attentions.
Abstract: Ferrous sulfide (FeS) nanoparticles constitute an effective hexavalent chromium (Cr(VI)) treatment reagent. However, FeS nanoparticles aggregate easily, significantly limiting their engineering applicability. To overcome this shortcoming and further improve Cr(VI) removal efficiency, this study used tannic acid (TA) to modify FeS nanoparticles. The results demonstrated that TA-modified FeS nanoparticles, TA-nano-FeS, had a significantly reduced tendency to agglomerate, and maintained particle diameters of 10-100 nm, which were much shorter than diameters of FeS nanoparticles. In addition, TA-nano-FeS could combine the surface-active functional groups of TA. The maximum removal capacity of TA-nano-FeS was 381.04 mg/g, which was 2.92 and 1.83 times higher than those of TA and nano-FeS, respectively. Furthermore, the acidic condition was more beneficial for Cr(VI) removal, and the coexisting cations (Ca2+ and Mg2+) slightly decreased the removal efficiency of Cr(VI). Adsorption, reduction, and co-precipitation were the removal mechanisms, and the reaction products included FeCr2O4, Cr2O3, Fe2O3, Cr(OH)3, and S8. The results provided valuable information for the practical application of TA-nano-FeS in Cr(VI) removal.
Abstract: In 2017, a spillover dam was constructed in the middle course of the Amazar River of Russia, forming a reservoir to provide water to the Amazar Pulp and Saw Mill project known as Polyarnaya. The dam uses an integrated approach, combining hydrochemical, hydrobiological, and ichthyological methods, as well as echo sounding. Comprehensive studies of the transformation of the Amazar River into a reservoir demonstrate the initially low biodiversity of hydrobionts characteristics for a semi-mountain river under the conditions of the sharply continental climate of the Trans-Baikal region. During the initial stage of formation, the reservoir was similar to the original watercourses in physical and chemical parameters and in the composition of the flora and fauna. It featured extensive shoals that were gradually turning into silt-covered and plant-filled shallow bays. These bays will eventually be locations of maximum concentration and diversity of hydrobionts and future nursery and spawning grounds for fish. The construction of the dam has significantly changed the hydrology of the Amazar River downstream of the dam. These findings reveal problems related to fish migration to the Thymallidae and Salmonidae spawning areas, as well as reductions in the biodiversity and quantity of the macrozoobenthos typical for run-of-river reservoirs.
Abstract: Sediment resuspension is critical to ecosystem function in shallow lakes. Turbidity is one of the most commonly used indicators of sediment resuspension and has proven to be strongly related with wind. However, it is still difficult to predict sediment resuspension due to its complicated mechanisms. In this study, a support vector regression (SVR) model considering the cumulative effect of wind speed was trained to predict sediment resuspension based on intensified field observations at two sites in Lake Taihu. The accuracy of the SVR model was evaluated, and the initial turbidity was introduced to the model to illustrate its contribution to sediment resuspension. The critical wind speed was also evaluated based on this model. The results indicate that the SVR model considering the cumulative effect of wind speed can increase the accuracy of prediction in comparison with traditional fitting methods. The root-mean-square error (RMSE) of the predicted turbidity dropped to 11.36 NTU at one site and 16.78 NTU at the other, and the maximal information coefficient (cimax) for the relationship between wind speed and turbidity increased to 0.56 for both observation sites. The introduction of initial turbidity significantly improved the performance of the SVR model, with an RMSE value lower than 8.00 NTU and a cimax value higher than 0.95. Analysis of the critical wind speed using the SVR model shows that the critical wind speed generally increased with the rise of initial turbidity. The critical wind speeds at initial turbidities of 30, 40, 50, and 60 NTU were 5, 6, 7, and 7 m/s, respectively.
Abstract: Significant scale effects have been detected on the filling/emptying time measured with a reduced-scale physical model of the Third Set of Locks of the Panama Canal. During the design phase, corrections were made to compensate for these effects. However, the measurements at the prototype scale indicated that the corrections were insufficient because they only accounted for the differences in skin friction. In this study, a general methodology was proposed to evaluate scale effects using three-dimensional numerical models. This methodology was validated and then applied to a portion of the filling/emptying system of the Panama Canal to quantify its scale effects. The results showed that this technique can consider all sources of scale effects that affect head losses, such as skin friction and flow separation, and thereby correctly simulate the filling/emptying time at the prototype scale. The proposed methodology for scale effect quantification can be used to correct the results of physical models, and it can be expected to improve estimation of the performance of prototypes.
Abstract: This study used model experiments to investigates hydraulic characteristics of flow at marguerite-shaped inlets with holes at the bottom of their lobes, known as modern marguerite-shaped inlets. This innovation reduces the swirling flow strength and improves the hydraulic performance of simple shaft spillways. Head-discharge relationships, flow circulation, threshold and critical submergence depths, and discharge coefficients are detailed for different flow regimes. The findings suggest that flow discharges through this type of inlet were approximately six, three, and two times greater than flow discharges through a simple shaft spillway, a circular piano key inlet, and a simple marguerite-shaped inlet, respectively. Increasing the outer length and height of inlets also uniformly distributed the flow around shaft spillways. The best hydraulic performance was observed in the inlets with an outer height of 1.25D and an outer length of 3.75D, where D is the diameter of the shaft spillway. Different equations, with high correlations and low errors, were derived to determine the threshold and critical submergence depths and the discharge coefficients for free and orifice flow regimes.