Volume 8 Issue 3
Jul.  2015
Turn off MathJax
Article Contents
Zhuo-nan Huang, Xiao-ling Wang, De-suo Yang. 2015: Adsorption of Cr(Ⅵ) in wastewater using magnetic multi-wall carbon nanotubes. Water Science and Engineering, 8(3): 226-232. doi: 10.1016/j.wse.2015.01.009
Citation: Zhuo-nan Huang, Xiao-ling Wang, De-suo Yang. 2015: Adsorption of Cr(Ⅵ) in wastewater using magnetic multi-wall carbon nanotubes. Water Science and Engineering, 8(3): 226-232. doi: 10.1016/j.wse.2015.01.009

Adsorption of Cr(Ⅵ) in wastewater using magnetic multi-wall carbon nanotubes

doi: 10.1016/j.wse.2015.01.009
Funds:  This work was supported by the Research Grant of the Phytochemistry Key Laboratory of Shaanxi Province (Grant No. 13JS005), the Project of Baoji University of Arts and Sciences (Grant No. YK1417), and the Project of Baoji Sciences and Technology Bureau (Grant No. 2013R7-5).
More Information
  • Corresponding author: Zhuo-nan Huang
  • Received Date: 2014-02-20
  • Rev Recd Date: 2015-01-12
  • Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the removal of Cr(Ⅵ) in aqueous solutions. The effects of adsorbent dosage, the concentration of Cr(Ⅵ) in aqueous solution, temperature, and pH value on the removal efficiency were studied. Results showed that the adsorption capacity of the magnetic multi-wall carbon nanotubes increased with the initial Cr(Ⅵ) concentration, but decreased with the increase of adsorbent dosage. The adsorption amount increased with contact time. The adsorption kinetics were best represented by the pseudo second-order kinetic model, and the adsorption isotherms indicated that the Langmuir model better reflected the adsorption process. The obtained calculation results for the Gibbs free energy revealed that the adsorption was a spontaneous and endothermic process. The enthalpy deviation was 3.835 kJ·mol-1. The magnetic multi-wall carbon nanotubes showed significant potential for application in adsorption of heavy metal ions.

     

  • loading
  • Ahalya, N., Ramachandra, T.V., Kanamadi, R.D., 2003. Biosorption of heavy metals. Research Journal Chemistry and Environment 7(4), 71-78.
    Altas, L., Büyükgüngör, H., 2008. Sulfide removal in petroleum refinery wastewater by chemical precipitation. Journal of Hazardous Materials 153(1-2), 462-469. http://dx.doi.org/10.1016/j.jhazmat.2007.08.076.
    Benhammou, A., Yaacoubi, A., Nibou, L., Tanouti, B., 2007. Chromium(VI) adsorption from aqueous solution onto Moroccan Al-pillared and cationic surfactant stevensite. Journal of Hazardous Materials 140(1-2), 104-109. http://dx.doi.org/10.1016/j.jhazmat.2006.06.077.
    Chen, G.C., Shan, X.Q., Zhou, Y.Q., Shen, X.E, Huang, H.L., Khan, S.U., 2009. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials 169(1-3), 912-918. http://dx.doi.org/10.1016/j.jhazmat.2009.04.034.
    Chen, H., Zhao, Y.G., Wang, A.Q., 2007. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials 149(2), 346-354. http://dx.doi.org/10.1016/ j.jhazmat.2007.03.085.
    Di, Z.C., Li, Y.H., Luan, Z.K., Liang, J., 2004. Adsorption of chromium(VI) ions from water by carbon nanotubes. Adsorption Science and Technology 22(6), 467-474. http://dx.doi.org/10.1260/0263617042879537.
    Fasfous, I.I., Radwan, E.S., Dawoud, J.N., 2010. Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes. Applied Surface Science 256(23), 7246-7252. http://dx.doi.org/10.1016/j.apsusc.2010.05.059.
    Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., Liang, Y., 2009. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials 164(2-3), 1517-1522. http://dx.doi.org/10.1016/j.jhazmat.2008.09.072.
    Gupta, V.K., Mittal, A., Kurup, L., Mittal, J., 2006. Adsorption of a hazardous dye, erythrosine, over hen feathers. Journal of Colloid and Interface Science 304(1), 52-57. http://dx.doi.org/10.1016/j.jcis.2006.08.032.
    Gupta, V.K., Jain, R., Mittal, A., Mathur, M., Sikarwar, S., 2007a. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. Journal of Colloid and Interface Science 309(2), 464-469. http://dx.doi.org/10.1016/j.jcis.2006.12.010.
    Gupta, V.K., Jain, R., Varshney, S., 2007b. Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. Journal of Colloid and Interface Science 312(2), 292-296. http://dx.doi.org/10.1016/j.jcis.2007.03.054.
    Gupta, V.K., Agarwal, S., Saleh, T.A., 2011a. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials 185(1), 17-23. http://dx.doi.org/10.1016/j.jhazmat.2010.08.053.
    Gupta, V.K., Agarwal, S., Saleh, T.A., 2011b. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research 45(6), 2207-2212. http://dx.doi.org/10.1016/j.watres.2011.01.012.
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5), 451-465. http://dx.doi.org/10.1016/S0032-9592(98)00112-5.
    Jeppu, G.P., Clement, T.P., 2012. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. Journal of Contaminant Hydrology 129-130, 46-53. http://dx.doi.org/10.1016/j.Jconhyd.2011.12.001.
    Juang, R.S., Shiau, R.C., 2000. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science 165(2), 159-167. http://dx.doi.org/10.1016/S0376-7388(99) 00235-5.
    Kosa, S.A., Al-Zhrani, G., Salam, M.A., 2012. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal 181-182, 159-168. http://dx.doi.org/10.1016/j.cej.2011.11.044.
    Kuo, C.Y., Wu, C.H., Wu, J.Y., 2008. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science 327(2), 308-315. http://dx.doi.org/10.1016/j.jcis.2008.08.038
    Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1-39.
    Li, Y.H., Wang, S.G., Zhang, X.F., Wei, J.Q., Xu, C.L., Luan, Z.K., Wu, D.H., 2003. Adsorption of fluoride from water by aligned carbon nanotubes. Material Research Bulletin 38(3), 469-476. http://dx.doi.org/10.1016/ S0025-5408(02)01063-2.
    Li, Z.H., Bowman, R.S., 2001. Retention of inorganic oxyanions by organo-kaolinite. Water Research 35(16) 3771-3776. http://dx.doi.org/10.1016/S0043-1354(01)00120-8.
    Lu, C., Chiu, H., 2006. Adsorption of zinc(II) from water with purified carbon nanotubes. Chemical Engineering Science 61(4), 1138-1145. http://dx.doi.org/10.1016/j.ces.2005.08.007.
    Madrakian, T., Afkhami, A., Ahmadi, M., 2011. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. Journal of Hazardous Materials 196, 109-114. http://dx.doi.org/10.1016/j.jhazmat.2011.08.078.
    Mauter, M.S., Elimelech, M., 2008. Environmental applications of carbon-based nanomaterials. Environment Science and Technology 42(16), 5843-5859. http://dx.doi.org/10.1021/es8006904.
    Mittal, A., Kurup, L., Gupta, V.K., 2005. Use of waste materials—Bottom Ash and De-Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solutions. Journal of Hazardous Materials 117(2-3), 171-178. http://dx.doi.org/10.1016/j.jhazmat.2004.09.016.
    Mittal, A., Mittal, J., Malviya, A., 2010a. Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science 343(2), 463-473. http://dx.doi.org/10.1016/j.jcis.2009.11.060.
    Mittal, A., Mittal, J., Malviya, A., Gupta, V.K., 2010b. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science 344(2), 497-507. http://dx.doi.org/10.1016/j.jcis.2010.01.007.
    Ngomsik, A.F., Bee, A., Draye, M., Cote, G., Cabuil, V., 2005. Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8(6-7), 963-970. http://dx.doi.org/10.1016/j.crci.2005.01.001.
    O’Brien, T.J., Ceryak, S., Patierno, S.R., 2003. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 533(1-2), 3-36. http://dx.doi.org/10.1016/j.mrfmmm.2003.09.006.
    Qu, S., Huang, F., Yu, S., Chen, G., Kong, J.L., 2008. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials 160(2-3), 643-647. http://dx.doi.org/10.1016/j.jhazmat.2008.03.037.
    Rahbari, M., Goharrizi, A.S., 2009. Adsorption of lead(II) from water by carbon nanotubes: equilibrium, kinetics, and thermodynamics. Water Environment Research 81(6), 598-607.
    Ren, X.M., Chen, C.L., Nagatsu, M., Wang, X.K., 2011. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chemical Engineering Journal 170(2-3), 395-410. http://dx.doi.org/10.1016/j.cej.2010.08.045.
    Shaidan, N.H., Eldemerdash, U., Awad, S., 2012. Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique. Journal of the Taiwan Institute of Chemical Engineers 43(1), 40-45. http://dx.doi.org/10.1016/j.jtice.2011.06.006.
    Sun, Q., Yang, L.Z., 2003. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research 37(7), 1535-1544. http://dx.doi.org/10.1016/S0043-1354(02)00520-1.
    Tang, W.W., Zeng, G.M., Gong, J.L., Liu, Y., Wang, X.Y., Liu, Y.Y., Liu, Z.F., Chen, L., Zhang, X.R., Tu, D.Z., 2012. Simultaneous adsorption of atrazine and Cu(II) from wastewater by magnetic multi-walled carbon nanotube. Chemical Engineering Journal 211-212, 470-478. http://dx.doi.org/10.1016/j.cej.2012.09.102.
    Tarigh, G.D., Shemirani, F., 2013. Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead(II) and manganese(II) in various matrices. Talanta 115, 744-750. http://dx.doi.org/10.1016/j.talanta.2013.06.018.
    Tawabini, B., Al-Khaldi, S., Atieh, M., Khaled, M.M., 2010. Removal of mercury from water by multi-walled carbon nanotubes. Water Science and Technology 61(3), 591-598. http://dx.doi.org/10.2166/wst.2010.897.
    Wang, W.J., Chen, H., Wang, A.Q., 2007. Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite. Separation and Purification Technology 55(2), 157-164. http://dx.doi.org/10.1016/ j.seppur.2006.11.015.
    Weber, W.J., Morris, J.C., 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division 89(2), 31-60.
    Yao, C., Xu, Y.Y., Kong, Y., Liu, W.J., Wang, W.J., Wang, Z.L., Wang, Y., Ji, J.L., 2012. Polypyrrole/palygorskite nanocomposite: a new chromate collector. Applied Clay Science 67-68, 32-35. http://dx.doi.org/10.1016/j.clay.2012.07.007.
    Yao, J., Tian, L., Wang, Y.X., Djah, A., Wang, F., Chen, H., Su, C., Zhuang, R., Zhou, Y., Choi, M.M., Bramanti, E., 2008. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicology and Environmental Safety 69(2), 289-295. http://dx.doi.org/10.1016/j.ecoenv.2007.02.005.
    Zhang, P.K., Wang, L., 2010. Extended Langmuir equation for correlating multilayer adsorption equilibrium data. Separation and Purification Technology 70(3), 367-371. http://dx.doi.org/10.1016/j.seppur.2009.10.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1418) PDF downloads(1984) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return