Volume 8 Issue 3
Jul.  2015
Turn off MathJax
Article Contents
Bin Wang, Chang-ping Zhu, Run-hang Gong, Jin Zhu, Bo Huang, Fei Xu, Qing-gong Ren, Qing-bang Han, Zhen-bing He. 2015: Degradation of acephate using combined ultrasonic and ozonation method. Water Science and Engineering, 8(3): 233-238. doi: 10.1016/j.wse.2015.03.002
Citation: Bin Wang, Chang-ping Zhu, Run-hang Gong, Jin Zhu, Bo Huang, Fei Xu, Qing-gong Ren, Qing-bang Han, Zhen-bing He. 2015: Degradation of acephate using combined ultrasonic and ozonation method. Water Science and Engineering, 8(3): 233-238. doi: 10.1016/j.wse.2015.03.002

Degradation of acephate using combined ultrasonic and ozonation method

doi: 10.1016/j.wse.2015.03.002
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 11274092, 11274091, and 11304026), the Jiangsu Graduate Education Reform Research and Practice Project in 2009 (Grant No. 22),and the Fundamental Research Fund for the Central Universities (Grant No.14B10128).
More Information
  • Corresponding author: Chang-ping Zhu
  • Received Date: 2014-07-07
  • Rev Recd Date: 2015-03-20
  • The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis) spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

     

  • loading
  • Chen, J.Y., Lin, Y.J., Kuo, W.C., 2013. Pesticide residue removal from vegetables by ozonation. Journal of Food Engineering 114(3), 404–411. http://dx.doi.org/10.1016/j.jfoodeng.2012.08.033.
    Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., Rodriguez, M., 2002. Comparison of different advanced oxidation processes for phenol degradation. Water Research 36(4), 1034–1042. http://dx.doi.org/10.1016/S0043-1354(01)00301-3.
    Golash, N., Gogate, P.R., 2012. Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrasonics Sonochemistry 19(5), 1051–1060. http://dx.doi.org/10.1016/j.ultsonch.2012.02.011.
    Hao, J., Wuyundalai Liu, H.J., Chen, T.P., Zhou, Y.X., Su, Y.C., Li, L.T., 2011. Reduction of pesticide residues on fresh vegetables with electrolyzed water treatment. Journal of Food Science 76(4), C520–C524. http://dx.doi.org/10.1111/j.1750-3841.2011.02154.x.
    Han, S.T., Li, J., Xi, X.L., 2009. Photocatalytic decomposition of acephate in irradiated TiO2 suspensions. Journal of Hazardous Materials 163(2-3), 1165–1172. http://dx.doi.org/10.1016/j.jhazmat.2008.07.077.
    Huang, J.L., Feng, R., Zhu, C.P., Chen, Z.H., 1995. Low-MHz frequency effect on a sonochemical reaction determined by an electrical method. Ultrasonics Sonochemistry 2(2), S93–S97. http://dx.doi.org/10.1016/1350-4177(95)00024-Z.
    Krishnamoorthya, K., Kima, G.S., Kim, S.J., 2013. Graphene nanosheets: ultrasound assisted synthesis and characterization. Ultrasonics Sonochemistry 20(2), 644–649. http://dx.doi.org/10.1016/j.ultsonch.2012.09.007.
    Li, L., Xie, M.N., Liang, Y.M., He, Y.Q., Chan, G.Y.S., Luan, T.G., 2012. Degradation of cypermethrin, malathion and dichlorovos in water and on tea leaves with O3/UV/TiO2 treatment. Food Control 28(2), 374–379. http://dx.doi.org/10.1016/j.foodcont.2012.05.009.
    Liu, B., Zhou, P., Liu, X.M., Sun, X., Li, H., Lin, M.S., 2013. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food and Bioprocess Technology 6(3), 710–718. http://dx.doi.org/10.1007/s11947-011-0774-5.
    Liu, Y.N., Jin, D., Lu, X.P., Han, P.F., 2008. Study on degradation of dimethoate solution in ultrasonic airlift loop reactor. Ultrasonics Sonochemistry 15(5), 755–760. http://dx.doi.org/10.1016/j.ultsonch.2007.12.004.
    Matouq, M.A., Al-Anber, Z.A., Aljbour, T. S., Al-Shannag, M., 2008. Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave. Ultrasonics Sonochemistry 15(5), 869–874. http://dx.doi.org/10.1016/j.ultsonch.2007.10.012.
    Mirmohseni, A., Houjaghan, M.R., 2013. Measurement of the pesticide methomyl by modified quartz crystal nanobalance with molecularly imprinted polymer. Journal of Environmental Science and Health, Part B: Pesticides Food Contaminants and Agricultural Wastes 48(4), 278–284. http://dx.doi.org/10.1080/03601234.2013.743779.
    Naddeo, V., Belgiorno, V., Ricco, D., Kassinos, D., 2009. Degradation of diclofenac during sonolysis, ozonation and their simultaneous application. Ultrasonics Sonochemistry 16(6), 790–794. http://dx.doi.org/10.1016/j.ultsonch.2009.03.003.
    Phugare, S.S., Gaikwad, Y.B., Jadhav, J.P., 2012. Biodegradation of acephate using a developed bacterial consortium and toxicological analysis using earthworms (Lumbricus terrestris) as a model animal. International Biodeterioration and Biodegradation 69, 1–9. http://dx.doi.org/10.1016/j.ibiod.2011.11.013.
    Shriwas, A.K., Gogate, P.R., 2011. Ultrasonic degradation of methyl Parathion in aqueous solutions: ntensification using additives and scale up aspects. Separation and Purification Technology 79(1), 1–7. http://dx.doi.org/10.1016/j.seppur.2011.02.034.
    Sivakumar, M., Pandit, A.B., 2001. Ultrasound enhanced degradation of Rhodamine B: optimization with power density. Ultrasonics Sonochemistry 8(3), 233–240. http://dx.doi.org/10.1016/S1350-4177(01)00082-7.
    Song, S., He, Z.Q., Chen, J.M., 2007. US/O3 combination degradation of aniline in aqueous solution. Ultrasonics Sonochemistry 14(1), 84–88. http://dx.doi.org/10.1016/j.ultsonch.2005.11.010.
    Wang, S., Huang, B.B., Wang, Y.S., Liao, L., 2006. Comparison of enhancement of pentachlorophenol sonolysis at 20 kHz by dual-frequency sonication. Ultrasonics Sonochemistry 13(6), 506-510. http://dx.doi.org/10.1016/j.ultsonch.2005.10.004.
    Xiong, S.F., Yin, Z.L., Yuan, Z.F., Yana, W.B., Yang, W.Y., Liu, J.J., Zhang, F., 2012. Dual-frequency (20/40 kHz) ultrasonic assisted photocatalysis for degradation of methylene blue effluent: synergistic effect and kinetic study. Ultrasonics Sonochemistry 19(4), 756–761. http://dx.doi.org/10.1016/j.ultsonch.2012.01.007.
    Xu, P., Janex, M.L., Savoye, P., Cockx, A., Lazarova, V., 2002. Wastewater disinfection by ozone: main parameters for process design. Water Research 36(4), 1043–1055. http://dx.doi.org/10.1016/ S0043-1354(01)00298-6.
    Yang, D.M., Wang, B., Ren, H.Y., Yuan, J.M., 2012. Effects and mechanism of ozonation for degradation of sodium acetate in aqueous solution. Water Science and Engineering 5(2), 155–163. http://dx.doi.org/10.3882/j.issn.1674-2370.2012.02.004.
    Zhang, H., Duan, L.J., Zhang, D.B., 2007. Absorption kinetics of ozone in water with ultrasonic radiation. Ultrasonics Sonochemistry. 14(5), 552–556. http://dx.doi.org/10.1016/j.ultsonch.20i06.09.005.
    Zhang, Y.Y., Xiao, Z.Y., Chen, F., Ge, Y.Q., Wu, J.H., Hu, X.S., 2010. Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrasonics Sonochemistry 17(1), 72–77. http://dx.doi.org/10.1016/j.ultsonch.2009.06.003.
    Zhu, C.P., Huang, B., Han, Q.B., Ni, C.H., Zhu, G.J., Liu, M.H., Shan, M.L., 2011. Frequency effect on p-nitrophenol degradation under conditions of strict acoustic and electric control. Water Science and Engineering 4(1), 74–82. http://dx.doi.org/10.3882/j.issn.1674-2370.2011.01.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1298) PDF downloads(2167) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return