Volume 8 Issue 3
Jul.  2015
Turn off MathJax
Article Contents
Sheng Qiang, Zhi-qiang Xie, Rui Zhong. 2015: A p-version embedded model for simulation of concrete temperature fields with cooling pipes. Water Science and Engineering, 8(3): 248-256. doi: 10.1016/j.wse.2015.08.001
Citation: Sheng Qiang, Zhi-qiang Xie, Rui Zhong. 2015: A p-version embedded model for simulation of concrete temperature fields with cooling pipes. Water Science and Engineering, 8(3): 248-256. doi: 10.1016/j.wse.2015.08.001

A p-version embedded model for simulation of concrete temperature fields with cooling pipes

doi: 10.1016/j.wse.2015.08.001
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 51109071).
More Information
  • Corresponding author: Sheng Qianga
  • Received Date: 2013-12-14
  • Rev Recd Date: 2014-10-10
  • Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

     

  • loading
  • Abbas, B.M., Al-Mahaidi, R.S., 2007. Internal temperature rise and early thermal stresses in concrete. In: Proceedings of the 4th International Structural Engineering and Construction Conference, ISEC-4: Innovations in Structural Engineering and Construction. Taylor and Francis/Balkema, Melbourne, pp. 395−400.
    Bentz, D.P., Weiss, W.J., 2008. REACT: reducing early age cracking today. Concrete Plant International (3), 56−61.
    Bureau of Reclamation, 1988. Concrete Manual. U.S. Department of the Interior, Washington, D.C.
    Chen, G.R., 2009. Principle and Application of Finite Element Method. Science Press, Beijing (in Chinese).
    Chen, S.H., Chen, Z., 2001. Study on p-version adaptive finite element method for analysis of hydraulic structure. Journal of Hydraulic Engineering 32(11), 62−70. (in Chinese).
    Chen, S.H., Qin, N., Xu G.S., Shahrour, I., 2010. Hierarchical algorithm of composite element containing drainage holes. International Journal for Numerical Methods in Biomedical Engineering 26(12), 1856−1867. http://dx.doi.org/10.1002/cnm.1271.
    Chen, S.H., Su, P.F., Shahrour, I., 2011. Composite element algorithm for the thermal analysis of mass concrete Simulation of cooling pipes. International Journal of Numerical Methods for Heat and Fluid Flow 21(4), 434−447. http://dx.doi.org/10.1108/09615531111123100.
    Chen, Z., Chen, S.H., 1999. 3-D hierarchical FEM analysis for hydraulic structure. Journal of Hydraulic Engineering 30(12), 53−58. http://dx.doi.org/10.3321/j.issn:0559-9350.1999.12.010. (in Chinese)
    Fei, W.P., Chen, S.H., 2003. 3-D p-version elasto-viscoplastic adaptive FEM model for hydraulic structures. Journal of Hydraulic Engineering 34(3), 86−92. http://dx.doi.org/10.3321/j.issn:0559-9350.2003.03.016. (in Chinese)
    Fei, W.P., Zhang, L., Xie, H.P., 2004. A p-version adaptive finite element method and its application to rock and soil engineering. Rock and Soil Mechanics 25(11), 1727−1732. http://dx.doi.org/10.3969/j.issn.1000-128X.2007.02.002. (in Chinese)
    Holm, H., Maischak, M., Stephan, E.P., 2008. Exponential convergence of the h-p version BEM for mixed boundary value problems on polyhedrons. Mathematical Methods in the Applied Science 31(17), 2069−2093. http://dx.doi.org/10.1002/mma.1009.
    Hossain, A.B., Weiss, J., 2004. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement and Concrete Composites 26(5), 531−540. http://dx.doi.org/10.1016/S0958-9465(03)00069-6.
    Kim, J.K., Kim, K.H., Yang, J.K., 2001. Thermal analysis of hydration heat in concrete structures with pipe-cooling system. Computers and Structures, 79(2), 163−171. http://dx.doi.org/10.1016/S0045-7949(00)00128-0.
    Lin, P., Li, Q.B., Jia, P.Y., 2014. A real-time temperature data transmission approach for intelligent cooling control of mass concrete. Mathematical Problems in Engineering 2014, Article ID 514606. http://dx.doi.org/10.1155/2014/514606.
    Liu, N., Liu, G.T., 1997. Sub-structural FEM for the thermal effect of cooling pipes in mass concrete structures. Journal of Hydraulic Engineering 28(12), 43−49. (in Chinese)
    Mai, J.X., 1998. A combined method of theoretic and numerical solutions for pipe cooling in concrete dams. Journal of Hydroelectric Engineering (4), 31−41. (in Chinese)
    Myers, T.G., Fowkes, N.D., Ballim, Y., 2009. Modeling the cooling of concrete by piped water. Journal of Engineering Mechanics 135(12), 1375-1383. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000046.
    Ribeiro, P., Bellizzi, S.C.B., 2010. Non-linear vibrations of deep cylindrical shells by the p-version finite element method. Shock and Vibration 17(1), 21−37. http://dx.doi.org/10.3233/SAV-2010-0495.
    Stojanovic, V., Ribeiro, P., Stoykov, S., 2013. Non-linear vibration of Timoshenko damaged beams by a new p-version finite element method. Computers and Structures 120, 107−119. http://dx.doi.org/10.1016/ j.compstruc.2013.02.012.
    Townsend, C.L., 1981. Control of Cracking in Mass Concrete Structures. United States Department of the Interior, Bureau of Reclamation, Denver.
    Vu, T.H., Deeks, A.J., 2008. A p-hierarchical adaptive procedure for the scaled boundary finite element method. International Journal for Numerical Methods in Engineering 73(1), 47−70. http://dx.doi.org/10.1002/nme.2055.
    Weiss, W.J., Bentz, D., Schindler, A., Lura, P., 2012. Internal curing - constructing more robust concrete. Structure Magazine (1), 10-14.
    Xu, G.S., Chen, S.H., 2006. Seepage analysis considering drainage holes by p-version adaptive composite element method. Chinese Journal of Rock Mechanics and Engineering 25(5), 969−973. (in Chinese)
    Yang, J., Hu, Y., Zuo, Z., Jin, F., Li, Q.B., 2012. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering 35, 145−156. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.016.
    Yazdani, S., Ribeiro, P., Rodrigues, J.D., 2014. A p-version layerwise model for large deflection of composite plates with curvilinear fibres. Composite Structures 108(1), 181−190. http://dx.doi.org/10.1016/j.compstruct.2013.09.014.
    Zhang, Y., Qiang, S., 2009. Research on 3D p-version hierarchical FEM for unsteady temperature field. Rock and Soil Mechanics 30(2), 487−491. http://dx.doi.org/10.3969/j.issn.1000-7598.2009.02.035. (in Chinese)
    Zhu, B.F., 1999. Thermal Stresses and Temperature Control of Mass Concrete. China Electric Power Press, Beijing (in Chinese)
    Zhu, Y.M., Liu, Y.Z., Xiao, Z.Q., 2004. Analysis of water cooling pipe system in mass concrete. In: Wieland, M., Ren, Q.W., Tan, J.S.Y., eds., New Development in Dam Engineering: Proceedings of the 4th International Conference on Dam Engineering. CRC Press, pp.1205−1210.
    Zhu, Z.Y., Qiang, S., Chen, W.M., 2013. A new method solving the temperature field of concrete around cooling pipes. Computers and Concrete 11(5), 441−462. http://dx.doi.org/10.12989/cac.2013.11.5.441.
    Zienkiewicz, O.C., Gago, J.P. de S.R., Kelly, D.W., 1983. The hierarchical concept in finite element analysis. Computers and Structures 16(1-4), 53−65. http://dx.doi.org/10.1016/0045-7949(83)90147-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1501) PDF downloads(2104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return