Volume 8 Issue 3
Jul.  2015
Turn off MathJax
Article Contents
Tian-chyi J. Yeh, De-qiang Mao, Yuan-yuan Zha, Jet-chau Wen, Li Wan, Kuo-chin Hsu, Cheng-haw Lee. 2015: Uniqueness, scale, and resolution issues in groundwater model parameter identification. Water Science and Engineering, 8(3): 175-194. doi: 10.1016/j.wse.2015.08.002
Citation: Tian-chyi J. Yeh, De-qiang Mao, Yuan-yuan Zha, Jet-chau Wen, Li Wan, Kuo-chin Hsu, Cheng-haw Lee. 2015: Uniqueness, scale, and resolution issues in groundwater model parameter identification. Water Science and Engineering, 8(3): 175-194. doi: 10.1016/j.wse.2015.08.002

Uniqueness, scale, and resolution issues in groundwater model parameter identification

doi: 10.1016/j.wse.2015.08.002
Funds:  This work was supported by the Strategic Environmental Research and Development Program (Grant No. ER-1365), the Environmental Security and Technology Certification Program (Grant No. ER201212), and the Earth Sciences of the National Science Foundation (Grant No. 1014594).
More Information
  • Corresponding author: Tian-chyi J. Yeh
  • Received Date: 2015-06-19
  • Rev Recd Date: 2015-07-17
  • This paper first visits uniqueness, scale, and resolution issues in groundwater flow forward modeling problems. It then makes the point that non-unique solutions to groundwater flow inverse problems arise from a lack of information necessary to make the problems well defined. Subsequently, it presents the necessary conditions for a well-defined inverse problem. They are full specifications of (1) flux boundaries and sources/sinks, and (2) heads everywhere in the domain at at least three times (one of which is t = 0), with head change everywhere at those times must being nonzero for transient flow. Numerical experiments are presented to corroborate the fact that, once the necessary conditions are met, the inverse problem has a unique solution. We also demonstrate that measurement noise, instability, and sensitivity are issues related to solution techniques rather than the inverse problems themselves. In addition, we show that a mathematically well-defined inverse problem, based on an equivalent homogeneous or a layered conceptual model, may yield physically incorrect and scenario-dependent parameter values. These issues are attributed to inconsistency between the scale of the head observed and that implied by these models. Such issues can be reduced only if a sufficiently large number of observation wells are used in the equivalent homogeneous domain or each layer. With a large number of wells, we then show that increase in parameterization can lead to a higher-resolution depiction of heterogeneity if an appropriate inverse methodology is used. Furthermore, we illustrate that, using the same number of wells, a highly parameterized model in conjunction with hydraulic tomography can yield better characterization of the aquifer and minimize the scale and scenario-dependent problems. Lastly, benefits of the highly parameterized model and hydraulic tomography are tested according to their ability to improve predictions of aquifer responses induced by independent stresses not used in the inverse modeling efforts.

     

  • loading
  • Bear, J., 1972. Dynamics of Fluids in Porous Media. New York: American Elsevier Publishing Company, Inc..
    Bohling, G.C., Zhan, X.Y., Butler Jr., J.J., Zheng, L., 2002. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities.Water Resour. Res. 38(12), 60-1–60-15. http://dx.doi.org/10.1029/2001WR001176.
    Brauchler, R., Liedl, R., Dietrich, P., 2003. A travel time based hydraulic tomographic approach. Water Resour. Res. 39(12). http://dx.doi.org/10.1029/2003 WR002262.
    Cardiff, M., Barrash, W., Kitanidis, P.K., Malama, B., Revil, A., Straface, S., Rizzo, E., 2009. A potential-based inversion of unconfined steady-state hydraulic tomography. Groundwater 47(2), 259–270. http://dx.doi.org/10.1111/j.1745-6584.2010.00685_1.x.
    Carrera, J., Neuman, S.P., 1986. Estimation of aquifer parameters under transient and steady state conditions, 2. Uniqueness, stability, and solution algorithms. Water Resour. Res. 22(2), 211–227. http://dx.doi.org/ 10.1029/WR022i002p00199
    Carrera, J., Alcolea, A., Medina, A., Hildalgo, J., Slooten, L., 2005. Inverse problem in hydrogeology. J. Hydrol. 13(1), 206–222. http://dx.doi.org/10.1007/s10040-004-0404-7.
    Castagna, M., Bellin, A., 2009. A Bayesian approach for inversion of hydraulic tomographic data. Water Resour. Res. 45(4), W04410. http://dx.doi.org/10.1029/2008WR007078.
    Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 1. Conditional simulation and the direct problem. Water Resour. Res. 8(4), 813–833. http://dx.doi.org/ 10.1029/WR018i004p00813.
    Delhomme, J.P., 1979. Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour. Res. 5(2), 269–280. http://dx.doi.org/10.1029/WR015i002p00269.
    de Marsily, G., Lavedan, G., Boucher, M., Fasanino, G., 1984. Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In: Verly G., et al. ed., Geostatistics for natural resources characterization, Proceedings of the NATO Advanced Study Institute. D. Reidel Publishing Company, Dordrecht, pp. 831–849.
    de Marsily, G., 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. San Diego: Academic Press.
    Doherty, J., Hunt, R.J., 2009. Two statistics for evaluating parameter identifiability and error reduction. J. Hydrol. 366(1–4), 119–127. http://dx.doi.org/10.1016/j.jhydrol.2008.12.018.
    Doherty, J., 2010. PEST-ASP User’s Manual. Brisbande: Watermark Numerical Computing.
    Doherty, J., Hunt, R.J., 2010. Reply to Comment on: Two statistics for evaluating parameter identifiability and error reduction. J. Hydrol. 380(3–4), 489–496. http://dx.doi.org/10.1016/j.jhydrol.2009.10.012.
    Emsellem, Y., de Marsily, G., 1971. An automatic solution for the inverse problem. Water Resour. Res. 7(5), 1264–1283. http://dx.doi.org/10.1029/WR007i005p01264.
    Eppstein, M.J., Dougherty, D.E., 1996. Simultaneous estimation of transmissivitiy values and zonation. Water Resour. Res. 32(11), 3321–3336. http://dx.doi.org/10.1029/96WR02283.
    Fienen, M.N., Clemo, T., Kitanidis, P.K., 2008. An interactive Bayesian geostatistical inverse protocol for hydraulic tomography. Water Resour. Res. 44(12), W00B01. http://dx.doi.org/10.1029/2007WR006730.
    Frind, E.O., Pinder, G.F., 1973. Galerkin solution of the inverse problem for aquifer transmissivity. Water Resour. Res. 9(5), 1397–1410. http://dx.doi.org/10.1029/WR009i005p01397.
    Gelhar, L.W., 1993. Stochastic Subsurface Hydrology. Upper Saddle River: Prentice Hall.
    Gomez-Hernanez, J., Sahuquillo, A., Capilla, J.E., 1997. Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J. Hydrol. 204(1–4), 162–174. http://dx.doi.org/10.1016/S0022-1694(97)00098-x.
    Gottlieb, J., Dietrich, P., 1995. Identification of the permeability distribution in soil by hydraulic tomography. Inverse Probl. 11(2), 353–360. http://dx.doi.org/10.1088/0266-5611/11/2/005
    Graham, W., McLaughlin, D., 1989. Stochastic analysis of nonstationary subsurface solute transport 2. Conditional Moments. Water Resour. Res. 25(11), 2331–2355. http://dx.doi.org/10.1029/WR025i011p02331.
    Hadamard, J., 1902. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin 13, 49–52.
    Haitjema, H.M., 1995. Analytic Element Modeling of Groundwater Flow. San Diego: Academic Press.
    Hanna, S., Yeh, T.-C.J., 1998. Estimation of co-conditional moments of transmissivity, hydraulic head, and velocity fields. Adv. Water Resour. 22(1), 87–93. http://dx.doi.org/10.1016/S0309-1708(97)00033-X.
    Harter, T., Yeh, T.-C.J., 1996. Conditional stochastic analysis of solute transport in heterogeneous, variably saturated soils. Water Resour. Res. 32(6), 1597–1609. http://dx.doi.org/10.1029/96WR00503.
    Hill, M.C., 2006. The practical use of simplicity in developing ground water models. Groundwater 44(6), 775–781. http://dx.doi.org/10.1111/j.1745-6584.2006.00227.x.
    Hill, M.C., 2010. Comment on “Two statistics for evaluating parameter identifiability and error reduction” by John Doherty and Randall J. Hunt. J. Hydrol. 380 (3–4), 481–488. http://dx.doi.org/10.1016/j.jhydrol.2009.10.011.
    Huang, S.-Y., Wen, J.-C., Yeh, T.-C.J., Lu, W., Juan, H.-L., Tseng, C.-M., Lee, J.-H., Chang, K.-C., 2011. Robustness of joint interpretation of sequential pumping tests: numerical and field experiments. Water Resour. Res. 47, W10530. http://dx.doi: 10.1029/2011WR010698
    Hughson, D.L., Yeh, T.-C.J., 2000. An inverse model for three-dimensional flow in variably saturated porous media. Water Resour. Res. 36(4), 829–839. http://dx.doi.org/10.1029/2000WR900001.
    Hunt, R.J., Doherty, J.E.,Tonkin, M.J., 2007. Are models too simple? Arguments for increased parameterization. Groundwater 45(3), 254–262. http://dx.doi.org/10.1111/j.1745-6584.2007.00316.x.
    Illman, W.A., Liu, X., Craig, A., 2007. Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms. J. Hydrol. 341(3–4), 222–234. http://dx.doi.org/10.1016/j.jhydrol.2007.05.011.
    Illman, W.A., Craig, A.J., Liu, X., 2008. Practical issues in imaging hydraulic conductivity through hydraulic tomography. Groundwater 46(1), 120–132. http://dx.doi.org/10.1111/j.1745-6584.2007.00374.x.
    Illman, W.A., Zhu, J., Craig, A.J., Yin, D., 2010. Comparison of aquifer characterization approaches through steady-state groundwater model validation: a controlled laboratory sandbox study. Water Resour. Res. 46(4). http://dx.doi.org/10.1029/2009WR007745.
    Indelman, P., 2003. Transient pumping well flow in weakly heterogeneous formations. Water Resour. Res. 39(10), 1287. http://dx.doi.org/10.1029/ 2003WR002036.
    Jang, C.-S., Liu, C.-W., 2004. Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the ChoushuiRiver alluvial fan, Taiwan. Hydrol. Process. 18(7), 1333–1350. http://dx.doi.org/10.1002/hyp.1397.
    Kitanidis, P.K., 1995. Quasi-linear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419. http://dx.doi.org/10.1029/95WR01945.
    Knopman, D., Voss, C., 1988. Discrimination among one‐dimensional models of solute transport in porous media: implications for sampling design. Water Resour. Res. 24(11), 1859-1876. http://dx.doi.org/ 10.1029/WR024i011p01859.
    Li, B., Yeh, T.-C.J., 1999. Cokriging estimation of the conductivity field under variably saturated flow conditions. Water Resour. Res. 35(12), 3663–3674. http://dx.doi.org/10.1029/1999WR900268.
    Li,W., Englert, A., Cirpka, O.A., Vanderborght, J., Vereecken, H., 2007. Two dimensional characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour. Res. 43(4), W04433. http://dx.doi.org/10.1029/2006WR005333.
    Liu, S., Yeh, T.-C.J., Gardiner, R., 2002. Effectiveness of hydraulic tomography: sandbox experiments. Water Resour. Res. 38(4), 5-1–5-9. http://dx.doi.org/10.1029/2001WR000338.
    Liu, X., Illman, W.A., Craig, A.J., Zhu, J., Yeh, T.-C.J., 2007. Laboratory sandbox validation of transient hydraulic tomography. Water Resour. Res. 43(5), W05404. http://dx.doi.org/10.1029/2006WR005144.
    Mao, D.Q., Yeh, T.-C.J., Wan, L., Hsu, K-C, Lee,C-H, Wen, J-C, 2013. Necessary conditions for inverse modeling of flow through variably saturated porous media. J. Hydrol. 52, 50–61. http://dx.doi.org/10.1016/ j.advwatres.2012.08.001.
    McLaughlin, D., Townley, L.R., 1996. A reassessment of the groundwater inverse problem. Water Resour. Res. 32(5), 1131–1161. http://dx.doi.org/10.1029/2006WR005144.
    Nævdal, G., Johnsen, L.M., Aanonsen, S.I., Vefring, E.H., 2003. Reservoir monitoring and continuous model updating using ensemble Kalman filter. Society of Petroleum Engineers Journal. 10(1), 66–74. http://dx.doi.org/10.2118/84372-PA
    Nelson, R.W., 1960. In-place measurement of permeability in heterogeneous media, 1, Theory of a proposed method. J. Geophys. Res. 65(6), 1753–1758. http://dx.doi.org/10.1029/JZ065i006p01753.
    Neuman, S.P., 1973. Calibration of distributed parameter groundwater flow models viewed as a multiobjective decision process under uncertainty. Water Resour. Res. 9(4), 1006–1021. http://dx.doi.org/1006–1021. 10.1029/WR009i004p01006.
    Ni, C.F., Yeh, T.-C.J., Chen, J.-S., 2009. Cost-effective hydraulic tomography surveys for predicting flow and transport in heterogeneous aquifers. Environ. Sci. Technol. 43(10), 3720–3727. http://dx.doi.org/10.1021/es8024098.
    Poeter, E.P., Hill, M.C., 1997. Inverse models: a necessary next step in groundwater modeling. Groundwater 35(2), 250–260. http://dx.doi.org/10.1111/j.1745-6584.1997.tb00082.x.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numerical Recipes in Fortran. New York: Cambridge University Press.
    Smith, L., Schwartz, F.W., 1981a. Mass Transport: 2. Analysis of Uncertainty in Prediction. Water Resour. Res. 17(2), 351–369. http://dx.doi.org/10.1029/WR017i002p00351.
    Smith, L., Schwartz, F.W., 1981b. Mass Transport: 3. Role of Hydraulic Conductivity Data in Prediction. Water Resour. Res. 17(5), 1463–1479. http://dx.doi.org/10.1029/WR017i005p01463.
    Stallman, R.W., 1956. Numerical analysis of regional water levels to define aquifer hydrology. Transactions, American Geophysical Union. 37(4), 451–460. http://dx.doi.org/10.1029/TR037i004p00451.
    Straface, S., Yeh,T.-C.J., Zhu, J., Troisi, S., Lee, C.H., 2007. Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resour. Res. 43(7), W07432. http://dx.doi.org/10.1029/2006WR005287.
    Sun, N.-Z., Yeh, W.W.-G., 1985. Identification of parameter structure in groundwater inverse problem. Water Resour. Res. 21(6), 869–883. http://dx.doi.org/10.1029/WR021i006p00869.
    Sun, R., Yeh, T.-C. J., Mao, D., Jin, M., Lu, W., Hao, Y., 2013. A temporal sampling strategy for hydraulic tomography analysis. Water Resour. Res. 49(7), 3881-3896. http://dx.doi.org/10.1002/wrcr.20337.
    Tosaka, H., Masumoto, K., Kojima, K., 1993. Hydropulse tomography for identifying 3-D permeability distribution. In: Proceedings of the 4th Annual International Conference on High Level Radioactive Waste Management. Amer Society of Civil Engineers, Las Vegas, pp. 955–959.
    Vasco, D.W., Keers, H., Karasaki, K., 2000. Estimation of reservoir properties using transient pressure data: an asymptotic approach. Water Resour. Res. 36(12), 3447-3465. http://dx.doi.org/10.1029/2000WR900179.
    Wagner, B.J., Gorelick, S.M., 1989. Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: from data to design. Water Resour. Res. 25(10), 2211–2225. http://dx.doi.org/10.1029/ WR025i010p02211.
    Wen, J.C., Wu, C.M., Yeh, T.-C.J., Tseng, C.M., 2010. Estimation of effective aquifer hydraulic properties from an aquifer test with multi-well observations (Taiwan). J. Hydrol. 18(5), 1143–1155. http://dx.doi.org/ 10.1007/s10040-010-0577-1.
    Wu, C.-M., Yeh, T.-C.J., Zhu, J., Lee, T.H., Hsu, N.-S., Chen, C.-H., Sancho, A.F., 2005. Traditional analysis of aquifer tests: comparing apples to oranges? Water Resour. Res. 41(9), W09402. http://dx.doi.org/ 10.1029/2004WR003717.
    Xiang, J., Yeh, T.-C.J., Lee, C.-H., Hsu, K.-C., Wen J.-C., 2009. A simultaneous successive linear estimator and a guide for hydraulic tomography analysis. Water Resour. Res. 45(2), W02432. http://dx.doi.org/10.1029/2008WR007180.
    Ye, M., Khaleel, R., Yeh, T.-C.J., 2005. Stochastic analysis of moisture plume dynamics of a field injection experiment. Water Resour. Res. 41(3), W03013. http://dx.doi.org/10.1029/2004WR003735.
    Yeh, T.-C.J., 1992. Stochastic modeling of groundwater flow and solute transport in aquifers. Hydrol. Process. 6(4), 369–395. http://dx.doi.org/10.1002/hyp.3360060402.
    Yeh, T.-C. J., Liu, S., 2000. Hydraulic tomography: development of a new aquifer test method. Water Resour. Res. 36(8), 2095–2105. http://dx.doi.org/10.1029/2000WR900114.
    Yeh, T.-C.J, Lee, C.H., 2007. Time to change the way we collect and analyze data for aquifer characterization. Groundwater 45(2), 116–118. http://dx.doi.org/10.1111/j.1745-6584.2006. 00292.x.
    Yeh, T.‐C.J., Zhu, J., 2007. Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones. Water Resour. Res. 43(6), W06435. http://dx.doi.org/10.1029/2006WR004877.
    Yeh, T.-C.J., Gelhar, L.W., Gutjahr, A.L., 1985a. Stochastic analysis of unsaturated flow in heterogeneous soils: 1. statistically isotropic media. Water Resour. Res. 21(4), 447–456. http://dx.doi.org/10.1029/WR021i004p00447.
    Yeh, T.-C.J., Gelhar, L.W., Gutjahr, A.L., 1985b. Stochastic analysis of unsaturated flow in heterogeneous soils: 2. statistically anisotropic media. Water Resour. Res. 21(4), 457–464. http://dx.doi.org/10.1029/WR021i004p 00457
    Yeh, T.-C.J., Gelhar, L.W., Gutjahr, A.L., 1985c. Stochastic analysis of unsaturated flow in heterogeneous soils: 3. observations and applications. Water Resour. Res. 21(4), 465–471. http://dx.doi.org/10.1029/WR021i004p 00465
    Yeh, T.-C.J., Srivastava, R., Guzman, A., Harter, T., 1993. A numerical model for two dimensional flow and chemical transport. Groundwater 31(4), 634–644.
    Yeh, T.-C.J., Jin, M., Hanna, S., 1996. An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields. Water Resour. Res. 32(1), 85–92. http://dx.doi.org/10.1029/95WR02869
    Yeh, T.-C.J., Liu, S., Glass, R.J., Baker, K., Brainard, J.R., Alumbaugh, D., LaBrecque, D., 2002. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resour. Res. 38(12), 14-1–14-3. http://dx.doi.org/10.1029/2001WR001204.
    Yeh, T.-C.J., Ye, M., Khaleel, R., 2005. Estimation of effective unsaturated hydraulic conductivity tensor using spatial moments of observed moisture plume. Water Resour. Res. 41(3), W03014. http://dx.doi.org/ 10.1029/2004WR003736.
    Yeh, T.-C.J., Lee, C.H., Hsu, K.C., Illman, W.A., Barrash, W., Cai, X., Daniels, J., Sudicky, E., Wan, L., Li, G., Winter, C.L., 2008. A view toward the future of subsurface characterization: CAT scanning groundwater basins. Water Resour. Res. 44(3), W03301. http://dx.doi.org/10.1029/2007WR006375.
    Yin, D., Illman, W.A., 2009. Hydraulic tomography using temporal moments of drawdown recovery data: a laboratory sandbox study. Water Resour. Res. 45(1). W01502. http://dx.doi.org/10.1029/2007WR006623.
    Zimmerman, D.A., de Marsily, G., Gotway,C.A., Marietta, M.G., Axness, C.L., Beauheim, R.L., Bras, R.L., Carrera, J., Dagan, G., Davies, P.B., Gallegos, D.P., 1998. A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour. Res. 34(6), 1373–1413. http://dx.doi.org/10.1029/98WR00003.
    Zhang, J., Yeh, T.-C.J., 1997. An iterative geostatistical inverse method for steady flow in the vadose zone. Water Resour. Res. 33(1), 63–71. http://dx.doi.org/10.1029/96WR02589.
    Zhu, J., Yeh, T.-C.J., 2005. Characterization of aquifer heterogeneity using transient hydraulic tomography.Water Resour. Res. 41(7), W07028. http://dx.doi.org/10.1029/2004WR003790.
    Zhu, J., Yeh T.-C. J., 2006. Analysis of hydraulic tomography using temporal moments of drawdown-recovery data. Water Resour. Res. 42(2), W02403. http://dx.doi.org/10.1029/ 2005WR004309.
    Zhu J., Cai, X., Yeh, T.-C.J., 2009. Analysis of tracer tomography using temporal moments of tracer breakthrough curves. Adv. Water Resour. 32(3), 391–400. http://dx.doi.org/10.1016/j.advwatres.2008.12.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1506) PDF downloads(1525) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return