Volume 9 Issue 3
Jul.  2016
Turn off MathJax
Article Contents
Lin-ke Li, Zhan-jun Wang, Si-hong Liu, Erich Bauer. 2016: Calibration and performance of two different constitutive models for rockfill materials. Water Science and Engineering, 9(3): 227-239. doi: 10.1016/j.wse.2016.11.005
Citation: Lin-ke Li, Zhan-jun Wang, Si-hong Liu, Erich Bauer. 2016: Calibration and performance of two different constitutive models for rockfill materials. Water Science and Engineering, 9(3): 227-239. doi: 10.1016/j.wse.2016.11.005

Calibration and performance of two different constitutive models for rockfill materials

doi: 10.1016/j.wse.2016.11.005
Funds:  This work was supported by the CRSRI Open Research Program (Grant No. CKWV2016375/KY), the National Natural Science Foundation of China (Grants No. 51609182, 51379130, and 51209141), and the Chinese Scholarship Council.
More Information
  • Corresponding author: Erich Bauer
  • Received Date: 2015-09-02
  • Rev Recd Date: 2016-03-15
  • In this paper, two different concepts for the constitutive modeling of the mechanical behavior of creep-sensitive rockfill materials are presented. Specifically, the performance of an extended generalized plasticity model proposed by Wang is compared with a simplified version of the hypoplastic constitutive model for weathered rockfill materials proposed by Bauer. Both models can reflect the influence of the mean stress on the incremental stiffness, the peak friction angle, and the dilatancy angle. The so-called solid hardness defined for a continuum description and originally introduced by Bauer is embedded in both models. Hydrochemical, thermal, and mechanical weathering are usually caused by environmental changes and are taken into account in a phenomenological description with an irreversible and time-dependent degradation of the solid hardness. A degradation of the solid hardness is usually accompanied by creep deformation of the stressed rockfill material. It is shown that appropriate modeling of creep deformation requires at least a unified description of the interaction between the time-dependent process of degradation of the solid hardness and the stress state. In this context, the solid hardness can be understood as a key parameter for describing the evolution of the state of weathering of the rockfill material. Particular attention is also paid to the necessary procedure for determining the constitutive constants of the two different constitutive models. Finally, the performance of the two different constitutive models is demonstrated by comparing the results obtained from numerical simulations with experimental data from the creep-sensitive rockfill material.

     

  • loading
  • Alonso, E.E., Oldecop, L.A., 2000. Fundamentals of rockfill collapse. In: Rahardjo, H., Toll, D.G., Leong, E.C., eds., Proceedings of the 1st Asian conference on unsaturated soils, 3−13. Balkema Press, Rotterdam.
    Alonso, E.E., Cardoso, R., 2010. Behavior of materials for earth and rockfill dams: Perspective from unsaturated soil mechanics. Frontier of Architecture and Civil Engineering in China, 4(1), 1−39. http://dx.doi.org/10.1007/s11709-010-0013-6.
    Bauer, E., 1996. Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations, 36(1), 13−26.
    Bauer, E., 2000. Conditions for embedding Casagrande’s critical states into hypoplasticity. Mechanics of Cohesive-Frictional Materials, 5(2), 125−148. http://dx.doi.org/10.1002/(SICI)1099-1484(200002)5:2<125::AID-CFM85>3.0.CO;2-0.
    Bauer, E., 2009. Hypoplastic modeling of moisture-sensitive weathered rockfill materials. Acta Geotechnica, (4), 261−272. http://dx.doi.org/10.1007/s11440-009-0099-y.
    Bauer, E., Fu, Z.Z., Liu, S.H., 2010. Hypoplastic constitutive modeling of wetting deformation of weathered rockfill materials. Frontiers of Architecture and Civil Engineering in China, 4(1), 78−91. http://dx.doi.org/10.1007/s11709-010-0011-8.
    Bauer, E., Fu, Z.Z., Liu, S.H., 2012. Influence of pressure and density on the rheological properties of rockfills. Frontiers of Structural and Civil Engineering, 6(1), 25−34. http://dx.doi.org/10.1007/s11709-012-0143-0.
    Brauns, J., Kast, K., Blinde, A., 1980. Compaction effects on the mechanical and saturation behaviour of disintegrated rockfill. In: Proceedings of International Conference on Compaction. Laboratoire Central des Ponts et Chausees, Paris, pp. 107−112.
    Chen, S.S., Han, H.Q., Fu, H., 2010. Stress and deformation behaviours of rockfill under cyclic loading. Chinese Journal of Geotechnical Engineering, 32(8), 1151−1157 (in Chinese).
    Chen, S.S., Fu, Z.Z., Han, H.Q., Peng, C., 2011. An elastoplastic model for rockfill materials considering particle breakage. Chinese Journal of Geotechnical Engineering, 33(10), 1489−1496 (in Chinese).
    Dong, W.X., Hu, L.M., Yu, Z.Y., Lü, H., 2013. Comparison between Duncan and Chang’s EB Model and the generalized plasticity model in the analysis of a high earth-rockfill dam. Journal of Applied Mathematics, 1−12. http://dx.doi.org/10.1155/2013/709430.
    Duncan, J.M., Chang, C.Y., 1970. Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629−1653.
    Ebrahimian, B., Bauer, E., 2012. Numerical simulation of the effect of interface friction of a bounding structure on shear deformation in a granular soil. International Journal for Numerical and Analytical Methods in Geomechanics, 36(12), 1486−1506. http://dx.doi.org/10.1002/nag.1059.
    Fang, X.S., 2005. Test Study and Numerical Simulation on Wetting Deformation of Gravel Sand. M. E. Dissertation. Hohai University, Nanjing (in Chinese).
    Fernandez Merodo, J.A., Pastor, M., Mira, P., Tonni, L., Herreros, M.I., Gonzalez, E., Tamagnini, R., 2004. Modelling of diffuse failure mechanisms of catastrophic landslides. Computer Methods in Applied Mechanics and Engineering, 193(27−29), 2911−2939. http://dx.doi.org/10.1016/j.cma.2003.09.016.
    Fu, H., Ling, H., 2009. Experimental Research on the Engineering Properties of the Fill Materials used in the Cihaxia Concrete Faced Rockfill Dam. Nanjing Hydraulic Research Institute, Nanjing (in Chinese).
    Fu, Z.Z., Chen, S.S., Liu, S.H., 2012. Hypoplastic constitutive modeling of the wetting induced creep of rockfill materials. Science China Technological Sciences, 55(7), 2066−2082. http://dx.doi.org/10.1007/s11431-012-4835-4.
    Fu, Z.Z., Chen, S.S., Peng, C., 2014. Modeling cyclic behavior of rockfill materials in a framework of generalized plasticity. International Journal of Geomechanics, 14(2), 191−204. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000302.
    Gudehus, G., 1996. A comprehensive constitutive equation for granular materials. Soils and Foundations, 36(1), 1−12.
    Gudehus, G., Jiang, Y.M., Liu, M., 2011. Seismo- and thermodynamics of granular solids. Granular Matter, 13(4), 319−340. http://dx.doi.org/10.1007/s10035-010-0229-0.
    Huang, W., Bauer, E., 2003. Numerical investigation of shear localization in a micro-polar hypoplastic material. International Journal for Numerical and Analytical Methods in Geomechanics, 27(4), 325-352. http://dx.doi.org/10.1002/nag.275.
    Justo, J.L., Durand, P., 2000. Settlement-time behaviour of granular embankments. International Journal for Numerical and Analytical Methods in Geomechanics, 24(3), 281−303. http://dx.doi.org/10.1002/(SICI)1096-9853(200003)24:3<281::AID-NAG66>3.0.CO;2-S.
    Kolymbas, D., 1991. An outline of hypoplasticity. Archive of Applied Mechanics, 61(3), 143−151. http://dx.doi.org/10.1007/BF00788048.
    Laufer, I., 2015. Grain crushing and high-pressure oedometer tests simulated with the discrete element method. Granular Matter, 17(3), 389−412. http://dx.doi.org/10.1007/s10035-015-0559-z.
    Li, G.X., 1988. Triaxial Wetting Experiments on Rockfill Materials Used in Xiaolangdi Earth Dam. Tsinghua University, Beijing.
    Ling, H.I., Liu, H.B., 2003. Pressure-level dependency and densification behavior of sand through a generalized plasticity model. Journal of Engineering Mechanics, 129(8), 851−860. http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:8(851).
    Ling, H.I., Yang, S.T., 2006. Unified sand model based on the critical state and generalized plasticity. Journal of Engineering Mechanics, 132(12), 1380−1391. http://dx.doi.org/10.1061/(ASCE)0733-9399(2006)132:12(1380).
    Liu, M.C., Gao, Y.F., Huang, X.M., 2005. Study on elasto-plastic constitutive model of rockfills with nonlinear strength characteristics. Chinese Journal of Geotechnical Engineering, 27(3), 294−298 (in Chinese).
    Manzanal, D., Pastor, M., Fernandez Merodo, J.A., 2011. Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part II: unsaturated soil modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 35(18), 1899−1917. http://dx.doi.org/10.1002/nag.983.
    Mase, G.T., Mase, G.E., 1999. Continuum Mechanics for Engineers, second ed. CRC Press, London.
    Mira, P., Tonni, L., Pastor, M., Fernandez Merodo, J.A., 2009. A generalized midpoint algorithm for the integration of a generalized plasticity model for sands. International Journal for Numerical Methods in Engineering, 77(9), 1201−1223. http://dx.doi.org/10.1002/nme.2445.
    Naylor, D.J., Maranha, J.R., Maranha das Neves, E., Veiga Pinto, A.A., 1997. A back-analysis of Beliche Dam. Geotechnique, 47(2), 221−233. http://dx.doi.org/10.1680/geot.1997.47.2.221.
    Niemunis, A., Herle, I., 1997. Hypoplastic model for cohesionless soils with elastic strain range. Mechanic of Cohesive-frictional Materials, 2(4), 279−299. http://dx.doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8.
    Oldecop, L.A., Alonso, E.E., 2001. A model for rockfill compressibility. Geotechnique, 51(2), 127−139.
    Oldecop, L.A., Alonso, E.E., 2007. Theoretical investigation of the time-dependent behaviour of rockfill. Geotechnique, 57(3), 289−301. http://dx.doi.org/10.1680/geot.2007.57.3.289.
    Oquendo, W.F., Muñoz, J.D., Lizcano, A., 2009. Oedometric test, Bauer’s law and the micro-macro connection for a dry sand. Computer Physics Communications, 180(4), 616−620. http://dx.doi.org/10.1016/j.cpc.2009.01.002.
    Ovalle, C., Dano, C., Hicher, P.Y., 2013. Experimental data highlighting the role of surface fracture energy in quasi-static confined comminution. International Journal of Fracture, 182(1), 123−130. http://dx.doi.org/10.1007/s10704-013-9833-4.
    Ovalle, C., Dano, C., Hicher, P.Y., Cisternas, M., 2015. An experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio. Canadian Geotechnical Journal, 52(5), 587−598. http://dx.doi.org/10.1139/cgj-2014-0079.
    Pastor, M., Zienkiewicz, O.C., Chan, A.H.C., 1990. Generalized plasticity and the modelling of soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 14(3), 151-190. http://dx.doi.org/10.1002/nag.1610140302.
    Pastor, M., 1991. Modelling of anisotropic sand behaviour. Computers and Geotechnics, 11(3), 173−208. http://dx.doi.org/10.1016/0266-352X(91)90019-C.
    Salim, W., Indraratna, B., 2004. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Canadian Geotechnical Journal, 41(4), 657−671. http://dx.doi.org/10.1139/t04-025#.VqI6k_krK70.
    Scherard, J.L., Cooke, J.B., 1987. Concrete-face rockfill dam: I. Assessment. Journal of Geotechnical and Geoenvironmental Engineering, 113(10), 1096−1112. http://dx.doi.org/10.1061/(ASCE)0733-9410(1987)113:10(1096).
    Soriano, A., Sanchez, F.J., 1999. Settlements of railroad high embankments. In: Proceedings of 12th European Conference on Soil Mechanics and Geotechnical Engineering. AA Balkema Publishers, Amsterdam, pp. 1885−1890.
    Sowers, G.F., Williams, R.C., Wallace, T.S., 1965. Compressibility of broken rock and settlement of rockills. In: Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering. University of Toronto Press, Montreal, pp. 561−565.
    Sun, H.Z., Huang, M.S., 2009. A constitutive model for coarse granular material incorporating both strain work-softening and dilatancy. Journal of Tongji University (Natural Science), 37(6), 727−733 (in Chinese).
    Svendsen, B., Hutter, K., Laloui, L., 1999. Constitutive models for granular materials including quasi-static frictional behaviour: Toward a thermodynamic theory of plasticity. Continuum Mechanics and Thermodynamics, 11(4), 263−275. http://dx.doi.org/10.1007/s001610050115.
    Tejchman, J., Bauer, E., 1996. Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and Geotechnics, 19(3), 221−244. http://dx.doi.org/10.1016/0266-352X(96)00004-3.
    Wang, Y. 2000. Analysis on rheology mechanism and study method of rockfill. Chinese Journal of Rock Mechanics and Engineering, 19(4), 526−530 (in Chinese).
    Wang, Z.J., Chen, S.S., Fu, Z.Z., 2014. Viscoelastic-plastic constitutive model of creep deformation for rockfill materials. Chinese Journal of Geotechnical Engineering, 36(12), 2188−2194. http://dx.doi.org/10.11779/CJGE201412005 (in Chinese).
    Wang, Z.J., Chen, S.S., Fu, Z.Z., 2015. Dilatancy behaviors and a generalized plasticity model of rockfill materials. Rock and Soil Mechanics, 36(7), 1931−1938. http://dx.doi.org/10.16285/j.rsm.2015.07.013 (in Chinese).
    Weng, M.C., 2014. A generalized plasticity-based model for sandstone considering time-dependent behavior and wetting deterioration. Rock Mechanics and Rock Engineering, 47(4), 1197−1209. http://dx.doi.org/10.1007/s00603-013-0466-8.
    Wu, W., Bauer, E., Kolymbas, D., 1996. Hypoplastic constitutive model with critical state for granular materials. Mechanics of Materials, 23(1), 45−69. http://dx.doi.org/10.1016/0167-6636(96)00006-3.
    Xiao, Y., Liu, H.L., Zhu, J.G., 2011. A 3D bounding surface model for rockfill materials. Science China Technological Sciences, 54(11), 2904−2915. http://dx.doi.org/10.1007/s11431-011-4554-2.
    Xiao, Y., Liu, H.L., Chen, Y.M., Jiang, J.S., Zhang, W.G., 2014. Testing and modeling of the state-dependent behaviors of rockfill Material. Computers and Geotechnics, 61, 153−165. http://dx.doi.org/10.1016/j.compgeo.2014.05.009.
    Xu, B., Zou, D.G., Liu, H.B., 2012. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model. Computers and Geotechnics, 43, 143−154. http://dx.doi.org/10.1016/j.compgeo.2012.03.002.
    Yao, Y.P., Sun, D.A., Luo, T.A., 2004. A critical state model for sands dependent on stress and density. International Journal for Numerical and Analytical Methods in Geomechanics, 28(4), 323−337. http://dx.doi.org/10.1002/nag.340.
    Yin, Z.Z., 2009. Stress and deformation of high earth and rock-fill dams. Chinese Journal of Geotechniacal Engineering, 31(1), 1−14 (in Chinese).
    Zhang, B.Y., Jia, Y.A., Zhang, Z.L., 2007. Modified Rowe’s dilatancy law of rockfill and Shen Zhujiang’s double yield surfaces elastoplastic model. Chinese Journal of Geotechnical Engineering, 29(10), 1443−1448 (in Chinese).
    Zhou, W., Hu, Y, Yang, S.C., 2007. Fabric theory on creep deformation mechanism for high rockfill dams. Chinese Journal of Geotechnical Engineering, 29(8), 1274−1278 (in Chinese).
    Zhou, W., Hua, J.J., Chang, X.L., 2011. Settlement analysis of the Shuibuya concrete-face rockfill dam. Computers and Geotechnics, 38(2), 269−280. http://dx.doi.org/10.1016/j.compgeo.2010.10.004.
    Zienkiewicz, O.C., Mroz, Z., 1984. Generalized plasticity formulation and applications to geomechanics. In: Mechanics of Engineering Materials. John Wiley & Sons, New York, pp. 655−679.
    Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T., 1999. Computational Geomechanics with Special Reference to Earthquake Engineering. John Wiley & Sons, New York.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (945) PDF downloads(1447) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return