Zhi-lin Sun, Sen-jun Huang, Jian-ge Jiao, Hui Nie, Mei Lu. 2017: Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China. Water Science and Engineering, 10(1): 59-69. doi: 10.1016/j.wse.2017.03.003
Citation: Zhi-lin Sun, Sen-jun Huang, Jian-ge Jiao, Hui Nie, Mei Lu. 2017: Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China. Water Science and Engineering, 10(1): 59-69. doi: 10.1016/j.wse.2017.03.003

Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China

doi: 10.1016/j.wse.2017.03.003
Funds:  This work was supported by the National Nature Science Foundation of China (Grant No. 40776007), and Projects Founded by the Science and Technology Department of Zhejiang Province (Grant No. 2009C03008-1).
More Information
  • Corresponding author: Zhi-lin Sun
  • Received Date: 2016-04-11
  • Rev Recd Date: 2016-10-22
  • Variations in coastline geometry caused by coastal engineering affect tides, storm surges, and storm tides. Three cluster land reclamation projects have been planned for construction in the Jiaojiang Estuary during the period from 2011 to 2023. They will cause significant changes in coastline geometry. In this study, a surge-tide coupled model was established based on a three-dimensional finite-volume coastal ocean model (FVCOM). A series of numerical experiments were carried out to investigate the effects of variations in coastline geometry on tides, storm surges, and storm tides. This model was calibrated using data observed at the Haimen and Ruian gauge stations and then used to reproduce the tides, storm surges, and storm tides in the Jiaojiang Estuary caused by Typhoon Winnie in 1997. Results show that the high tide level, peak storm surge, and high storm tide level at the Haimen Gauge Station increased along with the completion of reclamation projects, and the maximum increments caused by the third project were 0.13 m, 0.50 m, and 0.43 m, respectively. The envelopes with maximum storm tide levels of 7.0 m and 8.0 m inside the river mouth appeared to move seaward, with the latter shifting 1.8 km, 3.3 km, and 4.4 km due to the first project, second project, and third project, respectively. The results achieved in this study contribute to reducing the effects of, and preventing storm disasters after the land reclamation in the Jiaojiang Estuary.

     

  • Antony, C., Unnikrishnan, A.S., 2013. Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal. Estuarine Coastal and Shelf Science, 131, 6-11. http://dx.doi.org/10.1016/j.cpc.2014.08.004.
    Aoki, A., Isobe, A., 2007. Application of finite volume coastal ocean model to hindcasting the wind-induced sea-level variation in Fukuoka Bay. Journal of Oceanography, 63(2), 333-339. http://dx.doi.org/10.1007/s10872-007-0032-7.
    Banks, J.E., 1974. A mathematical model of a river-shallow sea system used to investigate tide, surge and their interaction in the Thames-Southern North Sea region. Philosophical Transactions of the Royal Society A, 275(1255), 567–609. http://dx.doi.org/10.1098/rsta.1974.0002.
    Bernier, N.B., Thompson, K.R., 2007. Tide-surge interaction off the east coast of Canada and northeastern United States. Journal of Geophysical Research, 112(C6), 1-12. http://dx.doi.org/10.1029/2006JC003793.
    Chen, C.S., Liu, H.D., Beardsley, R.C., 2003. An unstructured grid, finite-volume, three-dimensional, primitive equation ocean model: Application to coastal ocean and estuaries. Journal of Atmospheric and Ocean Technology, 20(1), 159-186. http://dx.doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2.
    Chen, C.S., Huang, H.S., Beardsley, R.C., Liu, H.D., Xu, Q.C., Cowles, G., 2007. A finite-volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models. Journal of Geophysical Research, 112(C3), 83-87. http://dx.doi.org/10.1029/2006JC003485.
    Debernard, J., Røed, L., 2008. Future wind, wave and storm surge climate in the Northern Seas: A revisit. Tellus, 60(3), 427-438. http://dx.doi.org/10.1111/j.1600-0870.2008.00312.x.
    Drewry, J.J., Newham, L.T.H., Croke, B.F.W., 2009. Suspended sediment, nitrogen and phosphorus concentrations and exports during storm-events to the Tuross Estuary, Australia. Journal of Environmental Management, 90(2), 879-887. http://dx.doi.org/10.1016/j.jenvman.2008.02.004.
    Duan, Y.H., Qin, Z.H., Li, Y.P., 1998. Influence of sea level rise on Shanghai astronomical tide and storm surge and estimation of probable water level. Journal of Oceanology and Limnology, 16(4), 298-307. http://dx.doi.org/10.1007%2FBF02844926.
    Goudeau, D.A., Conner, W.C., 1968. Storm surge over the Mississippi River Delta accompanying hurricane Betsy, 1965. Monthly Weather Review, 96(2), 118-124. http://dx.doi.org/10.1175/1520-0493(1968)096<0118:SSOTMR>2.0.CO;2.
    Guo, Y.K., Zhang, J.S., Zhang, L.X., Shen, Y.M., 2009. Computational investigation of typhoon-induced storm surge in Hangzhou Bay, China. Estuarine Coastal and Shelf Science, 85(4), 530-536. http://dx.doi.org/10.1016/j.ecss.2009.09.021.
    Hu, K., Ding, P., Ge, J., 2007. Modeling of storm surge in the coastal waters of Yangtze Estuary and Hangzhou Bay, China. Journal of Coastal Research, SI(50), 527-533.
    Large, W.G., Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3), 324-336. http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.
    Li, D.M., Fu, Q.J., Xie, Y.Y., Bai, L., 2011. Numerical model of storm surge and inundation in Bohai Bay. Transactions of Tianjin University, 17(1), 57-61. http://dx.doi.org/10.1007/s12209-011-1515-6.
    Li, M., Zhong, L., Boicourt, W.C., 2005. Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and comparison with observations. Journal of Geophysical Research, 110(C12), 1-22. http://dx.doi.org/10.1029/2004JC002585.
    Nicholls, R.J., Wong, P.P., Burkett, V., Codignotto, J., Hay, J., McLean, R., Ragoonaden, S., Woodroffe, C.D., 2007. Coastal systems and low-lying areas. In: Parry OFC, M.L., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., eds., Climate Change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 315-356.
    Nie, H., Sun, Z.L., Xie, C.F., 2012. Simulating a typhoon storm surge using a nested Ecomsed model. Procedia Engineering, 31, 775–780. http://dx.doi.org/10.1016/j.proeng.2012.01.1101.
    Peng, M.C., Xie, L., Pietrafesa, L.J., 2004. A numerical study of storm surge and inundation in the Croatan-Albemarle-Pamlico Estuary System. Estuarine, Coastal and Shelf Science, 59(1), 121-137. http://dx.doi.org/10.1016/j.ecss.2003.07.010.
    Rego, J.L., Li, C.Y., 2010. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita. Journal of Geophysical Research, 115(C6), 1-19. http://dx.doi.org/10.1029/2009JC005285.
    Riddin, T., Adams, J.B., 2010. The effect of a storm surge event on the macrophytes of a temporarily open/closed estuary, South Africa. Estuarine Coastal and Shelf Science, 89(1), 119-123. http://dx.doi.org/10.1016/j.ecss.2010.06.004.
    Roy, G.D., 1995. Estimation of expected maximum possible water level along the Meghna estuary using a tide and surge interaction model. Environment International, 21(5), 671-677. http://dx.doi.org/10.1016/0160-4120(95)00078-Y.
    Roy, G.D., 1999. Sensitivity of water level associated with tropical storms along the Meghna estuary in Bangladesh. Environment International, 25(1), 109-116. http://dx.doi.org/10.1016/S0160-4120(98)00095-6.
    State Oceanic Administration (SOA) of China, 1998. Bulletin of Oceanic Disaster of China in 1997. China Ocean Press, Beijing.
    Sun, Z.L., Lu, M., Nie, H., Huang, S.J., 2014a. Impacts of climatological change on storm surge in Zhejiang coastal water. Journal of Zhejiang University (Science Edition), 41(1), 90-94. http://dx.doi.org/ 10.3785/j.issn.1008-9497.2014.01.020 (in Chinese).
    Sun, Z.L., Lu, M., Nie, H., Huang, S.J., 2014b. Analysis of storm surge during typhoons landing on Zhejiang coasts. Journal of Zhejiang University (Engineering Science), 48(2), 262-267. http://dx.doi.org/10.3785/j.issn.1008-973X.2014.02.012 (in Chinese).
    Sun, Z.L., Huang, S.J., Nie, H., Jiao, J.G., Huang, S.H., Zhu, L.L., Xu, D., 2015. Risk analysis of seawall over flowed by storm surge during super typhoon. Ocean Engineering, 107, 178-185. http://dx.doi.org/10.1016/j.oceaneng.2015.07.041.
    Tao, J.F., Zhang, C.K., Yao, J., 2011. Effect of large-scale reclamation of tidal flats on tides and tidal currents in offshore areas of Jiangsu Province. Journal of Hohai University (Natural Sciences), 39(2), 225-230. http://dx.doi.org/10.3876/j.issn.1000-1980.2011.02.020 (in Chinese).
    Vaz, N., Dias, J.M., Leitao, P.C., 2009. Three-dimensional modelling of a tidal channel: The Espinheiro Channel (Portugal). Continetal Shelf Research, 29(1), 29-41. http://dx.doi.org/10.1016/j.csr.2007.12.005.
    Wang, W., Liu, H., Li, Y.Q., Su, J.L., 2014. Development and management of land reclamation in China. Ocean and Coastal Management, 102, 415-425. http://dx.doi.org/10.1016/j.ocecoaman.2014.03.009.
    Wang, Z.W., Cheng, W.P., 2002. Analysis of ecological mechanism of urban flood and waterlog research based mainly on Hangzhou City. Journal of Zhejiang University (Engineering Science), 36(5), 582-587 (in Chinese).
    Warner, J.C., Geyer, W.R., Lerczak, J.A., 2005. Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research, 110(C5), 1-13. http://dx.doi.org/10.1029/2004JC002691.
    Weisberg, R.H., Zheng, L.Y., 2006. Hurricane storm surge simulation for Tampa Bay. Estuaries and Coasts, 29(6), 899-913. http://dx.doi.org/10.1007/BF02798649.
    Weisberg, R.H., Zheng, L.Y., 2008. Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida region. Journal of Geophysical Research, 113(C12), 1-17. http://dx.doi.org/10.1029/2008JC005115.
    Wilmott, C.J., 1981. On the validation of models. Physical Geography, 2, 184-194.
    Xie, Y.L., Huang, S.C., Wang, R.F., Zhao, X., 2007. Numerical simulation of effects of reclamation in Qiantang Estuary on storm surge at Hangzhou Bay. Ocean Engineering, 25(3), 61–67 (in Chinese).
    Xu, S.D., Yin, K., Huang, W.R., Zheng, W., 2014. Numerical simulation of typhoon-induced storm surge on the coast of Jiangsu Province, China, based on coupled hydrodynamic and wave models. Journal of Southeast University (English Edition), 30(4), 489-494. http://dx.doi.org/10.3969/j.issn.1003-7985.2014.04.015.
    Xue, P.F., Chen, C.S., Ding, P.X., Beardsley, R.C., Lin, H.C., Ge, J.Z., Kong, Y.Z., 2009. Saltwater intrusion into the Changjiang River: A model-guided mechanism study. Journal of Geophysical Research, 114(C2), 1-15. http://dx.doi.org/10.1029/2008JC004831.
    Yin, Y.H., Zhou, Y.Q, Ding, D., 2004. Evolution of modern Yellow River Delta Coast. Marine Science Bulletin, 6(2), 34-44. http://dx.doi.org/10.3969/j.issn.1000-9620.2004.02.005.
    Yoon, J.J., Shim, J.S., Park, K.S., Lee, J.C., 2014. Numerical experiments of storm winds, surges, and waves on the southern coast of Korea during Typhoon Sanba: The role of revising wind force. Natural Hazards and Earth System Sciences, 14(12), 3279-3295. http://dx.doi.org/10.5194/nhess-14-3279-2014.
    Zhao, P., Jiang, W.S., 2011. A numerical study of the effects of coastal geometry in the Bohai Sea on storm surges induced by cold-air outbreaks. Journal of Ocean University of China, 10(1), 9-15. http://dx.doi.org/10.1007/s11802-011-1746-0 (in Chinese).
    Zheng, F.F., Westra, S., Sisson, S.A., 2013. Quantifying the dependence between extreme rainfall and storm surge in the coastal zone. Journal of Hydrology, 505, 172-187. http://dx.doi.org/10.1016/j.jhydrol.2013.09.054.
    Zhong, Z., Zhang, J.S., 2006. Explicit simulation on the track and intensity of tropical cyclone Winnie (1997). Journal of Hydrodynamics, Ser. B, 18(6), 736-741. http://dx.doi.org/ 10.1016/S1001-6058(07)60014-6.
  • Relative Articles

    Xi Feng, Zheng Li, Hui Feng, Jia-yan Yang, Shou-peng Xie, Wei-bing Feng. 2024: Contributors to tidal duration asymmetry with varied coastline configurations on western shelf of Yellow Sea. Water Science and Engineering, 17(1): 1-12. doi: 10.1016/j.wse.2023.09.006
    Jos R. M. Muller, Yong-ping Chen, Stefan G. J. Aarninkhof, Ying-chi Chan, Theunis Piersma, Dirk S. van Maren, Jian-feng Tao, Zheng Bing Wang, Zheng Gong. 2020: Ecological impact of land reclamation on Jiangsu coast (China): A novel ecotope assessment for Tongzhou Bay. Water Science and Engineering, 13(1): 57-64. doi: 10.1016/j.wse.2020.04.001
    Sonja Eichentopf, Harshinie Karunarathna, José M. Alsina. 2019: Morphodynamics of sandy beaches under the influence of storm sequences: Current research status and future needs. Water Science and Engineering, 12(3): 221-234. doi: 10.1016/j.wse.2019.09.007
    Dominic E. Reeve, Ali Adel Zuhaira, Harshinie Karunarathna. 2019: Computational investigation of hydraulic performance variation with geometry in gabion stepped spillways. Water Science and Engineering, 12(1): 62-72. doi: 10.1016/j.wse.2019.04.002
    Zhi-yuan Wu, Chang-bo Jiang, Bin Deng, Jie Chen, Yong-gang Cao, Lian-jie Li. 2018: Evaluation of numerical wave model for typhoon wave simulation in South China Sea. Water Science and Engineering, 11(3): 229-235. doi: 10.1016/j.wse.2018.09.001
    Hai-bo Yang, En-chong Li, Yong Zhao, Qiu-hua Liang. 2017: Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary. Water Science and Engineering, 10(4): 311-319. doi: 10.1016/j.wse.2017.12.009
    Jin-hai Zheng, Sang Sang, Jin-cheng Wang, Chun-yan Zhou, Hong-jun Zhao. 2017: Numerical simulation of typhoon-induced storm surge along Jiangsu coast, Part I: Analysis of tropical cyclone. Water Science and Engineering, 10(1): 2-7. doi: 10.1016/j.wse.2017.03.004
    Jin-hai Zheng, Jin-cheng Wang, Chun-yan Zhou, Hong-jun Zhao, Sang Sang. 2017: Numerical simulation of typhoon-induced storm surge along Jiangsu coast, Part II: Calculation of storm surge. Water Science and Engineering, 10(1): 8-16. doi: 10.1016/j.wse.2017.03.011
    Wen-yan Zhang, Zheng Gong, Chang-kuan Zhang, Wei Tan. 2016: Response of nearshore circulation outside Yangtze Estuary to El Niño events. Water Science and Engineering, 9(2): 145-154. doi: 10.1016/j.wse.2016.02.004
    Shun-qi Pan, Yang-ming Fan, Jia-ming Chen, Chia-chuen Kao. 2016: Optimization of multi-model ensemble forecasting of typhoon waves. Water Science and Engineering, 9(1): 52-57. doi: 10.1016/j.wse.2016.02.001
    Dong-mei Xie, Qing-ping Zou, John W. Cannon. 2016: Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm. Water Science and Engineering, 9(1): 33-41. doi: 10.1016/j.wse.2016.02.003
    Chun-ye WANG, Bin ZHOU, Bei HUANG. 2015: A continuing 30-year decline in water quality of Jiaojiang Estuary, China. Water Science and Engineering, 8(1): 20-29. doi: 10.1016/j.wse.2015.01.007
    Mohammad SOLTANIASL, Kiyosi KAWANISI, Junki YANO, Kazuhiko ISHIKAWA. 2013: Variability in salt flux and water circulation in Ota River Estuary, Japan. Water Science and Engineering, 6(3): 283-295. doi: 10.3882/j.issn.1674-2370.2013.03.005
    Viet-Thanh NGUYEN, Jin-hai ZHENG, Ji-sheng ZHANG. 2013: Mechanism of back siltation in navigation channel in Dinh An Estuary, Vietnam. Water Science and Engineering, 6(2): 178-188. doi: 10.3882/j.issn.1674-2370.2013.02.006
    Yong-liang ZHANG, Ming-fei MIAO, Ji-ming MA. 2010: Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure. Water Science and Engineering, 3(2): 174-189. doi: 10.3882/j.issn.1674-2370.2010.02.006
    Shi-li HUANG, Jian XU, De-guan WANG, Dong-yan LU. 2010: Storm surge variational assimilation model. Water Science and Engineering, 3(2): 166-173. doi: 10.3882/j.issn.1674-2370.2010.02.005
    Xiang-dong ZHANG, Li-mo TANG, Tian-yi XU. 2009: Experimental study of flow intensity influence on 2-D sand ripple geometry characteristics. Water Science and Engineering, 2(4): 52-59. doi: 10.3882/j.issn.1674-2370.2009.04.005
    Yong-hong YANG, Zhan-yu ZHANG, Xin-yi XIANG. 2009: Spatial variation of reference crop evapotranspiration on Tibetan Plateau. Water Science and Engineering, 2(1): 112-120 . doi: 10.3882/j.issn.1674-2370.2009.01.011
    Xi LI, Yi-gang WANG, Su-xiang ZHANG. 2009: Numerical simulation of water quality in Yangtze Estuary. Water Science and Engineering, 2(4): 40-51. doi: 10.3882/j.issn.1674-2370.2009.04.004
    Xu Fumin, Zhang Changkuan, Mao Lihua, Tao Jianfeng. 2008: Effects of storm waves on rapid deposition of sediment in the Yangtze Estuary channel. Water Science and Engineering, 1(1): 27-36 . doi: 10.3882/j.issn.1674-2370.2008.01.004
  • Cited by

    Periodical cited type(12)

    1. Ningsih, N.S., Hanifah, F., Yani, L.F. et al. Simulated response of seawater elevation and tidal dynamics in Jakarta Bay to coastal reclamation. Ocean Dynamics, 2024, 74(3): 211-221. doi:10.1007/s10236-024-01598-8
    2. Liu, Y., Xia, X., Wang, X. et al. Human-induced rapid siltation within a macro-tidal bay during past decades. Frontiers in Marine Science, 2024. doi:10.3389/fmars.2024.1325003
    3. Gou, X., Liang, H., Cai, T. et al. The Impact of Coastline and Bathymetry Changes on the Storm Tides in Zhejiang Coasts. Journal of Marine Science and Engineering, 2023, 11(9): 1832. doi:10.3390/jmse11091832
    4. Xu, H., Wang, G., Huang, Z. et al. Hydrodynamic interactions between tide and runoff in the Luanhe Estuary in Bohai Sea, China: From aquaculture reclamation to restoration. Ocean and Coastal Management, 2023. doi:10.1016/j.ocecoaman.2023.106586
    5. Zhang, Y.. Mathematical simulation of backwater and velocity distribution around tandem cylindrical piles. Journal of Physics: Conference Series, 2023, 2565(1): 012001. doi:10.1088/1742-6596/2565/1/012001
    6. Masoud, F., El-Shayeb, H. DEVELOPING THE LITTORAL GRADIENT: Speculation or geologic necessity?. Routledge Handbook of Seascapes, 2022. doi:10.4324/9780429273452-23
    7. Chen, K., Kuang, C., Wang, L. et al. Storm surge prediction based on long short‐term memory neural network in the east China sea. Applied Sciences (Switzerland), 2022, 12(1): 181. doi:10.3390/app12010181
    8. Xianwu, S., Bingrui, C., Jufei, Q. et al. Simulation of inundation caused by typhoon-induced probable maximum storm surge based on numerical modeling and observational data. Stochastic Environmental Research and Risk Assessment, 2021, 35(11): 2273-2286. doi:10.1007/s00477-021-02034-9
    9. Wang, Q., Pan, C., Pan, D. Numerical study of the effect of typhoon Yagi on the Qiantang River tidal bore. Regional Studies in Marine Science, 2021. doi:10.1016/j.rsma.2021.101780
    10. Zhilin, S., Shanhong, Z., Chen, W. et al. Simulation and analysis of storm surge at Zhoushan fishing port. Haiyang Xuebao, 2020, 42(1): 136-143. doi:10.3969/j.issn.0253-4193.2020.01.014
    11. He, W., Yao, Y., Huang, S. et al. Effects of variations in Jiaojiang estuarine geography on storm tides. Case study of Typhoon 9711 | [椒江河口形态变化对风暴潮位的影响 --以9711号台风为例]. Shuili Fadian Xuebao/Journal of Hydroelectric Engineering, 2019, 38(7): 21-35. doi:10.11660/slfdxb.20190703
    12. Liu, X., Kuang, C.P., Mu, J.B. et al. Character of extreme high tide level variations response to coastline deformation in Taizhou Bay. IOP Conference Series: Earth and Environmental Science, 2018, 191(1): 012033. doi:10.1088/1755-1315/191/1/012033

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.7 %FULLTEXT: 24.7 %META: 63.9 %META: 63.9 %PDF: 11.4 %PDF: 11.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.1 %其他: 5.1 %China: 74.4 %China: 74.4 %India: 0.3 %India: 0.3 %Reserved: 10.2 %Reserved: 10.2 %United States: 9.9 %United States: 9.9 %其他ChinaIndiaReservedUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1157) PDF downloads(1428) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return