Citation: | Tong-chao Nan, Ji-chun Wu. 2017: Application of ensemble H-infinity filter in aquifer characterization and comparison to ensemble Kalman filter. Water Science and Engineering, 10(1): 25-35. doi: 10.1016/j.wse.2017.03.009 |
Assumaning, G.A., Chang, S.Y., 2016. Application of sequential data-assimilation techniques in groundwater contaminant transport modeling. Journal of Environmental Engineering 142(2), 01015073. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001034.
|
Carrera, J., Neuman, S.P., 1986.Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resources Research 22(2), 211−227. http://dx.doi.org/10.1029/WR022i002p00211.
|
Chen, L., Kang, Q.J., Mu, Y.T., He, Y.L., Tao, W.Q., 2014. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer 76, 210−236. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.04.032.
|
Chen, Y., Zhang, D.X., 2006. Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources 29(8), 1107−1122. http://dx.doi.org/10.1016/j.advwatres.2005.09.007.
|
Chung, C.C., Lin, C.P., 2009. Apparent dielectric constant and effective frequency of TDR measurements: Influencing factors and comparison. Vadose Zone Journal 8(3), 548−556. http://dx.doi.org/10.2136/vzj2008.0089.
|
Deng, Z.H., 2013. Robust finite-time H-infinity filtering for uncertain systems subject to missing measurements. Journal of Inequalities and Applications 236. http://dx.doi.org/10.1186/1029-242X-2013-236.
|
Deutsch, C., Journel, A., 1998. GSLIB: Geostatistical Software LIBrary and User’s Guide, Second ed. Oxford University Press, New York.
|
Dou, Z., Zhou, Z.F., 2014. Lattice Boltzmann simulation of solute transport in a single rough fracture. Water Science and Engineering 7(3), 277−287. http://dx.doi.org/10.3882/j.issn.1674-2370.2014.03.004.
|
Essaid, H.I., Bekins, B.A., Cozzarelli, I.M., 2015. Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding. Water Resources Research 51(7), 4861–4902. http://dx.doi.org/10.1002/2015WR017121.
|
Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics 53(4), 343−367. http://dx.doi.org/10.1007/s10236-003-0036-9.
|
Franssen, H.J.H., Kinzelbach, W., 2008. Real-time groundwater flow modeling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research 44(9), W09408. http://dx.doi.org/10.1029/2007WR006505.
|
Han, Y.Q., Zhang, Y.C., Wang, Y.F., Ye, S., Fang, H.X., 2009. A new sequential data assimilation method. Science in China Series E: Technological Sciences 52(4), 1027−1038. http://dx.doi.org/10.1007/s11431-008-0189-3.
|
Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. MODFLOW-2000, the U.S. Geological Survey Modular Ground-water Model: User Guide to Modularization Concepts and the Ground-water Flow Process, Open-File Rep 00-92. U.S. Geological Survey, Reston.
|
Hassibi, B., Kailath, T., Sayed, A.H., 2000. Array algorithms for H∞ estimation. IEEE Transactions on Automatic Control 45(4), 702−706. http://dx.doi.org/10.1109/9.847105.
|
Khargonekar, P.P., Nagpal, K.M., 1991. Filtering and smoothing in an H∞ setting. IEEE Transactions on Automatic Control 36(2), 152−166. http://dx.doi.org/10.1109/9.67291.
|
Lü, H.S., Li, X.L., Yu, Z.B., Horton, R., Zhu, Y.H, Hao, Z.C., Xiang, L., 2010. Using a H-infinity filter assimilation procedure to estimate root zone soil water content. Hydrological Processes 24(25), 3648−3660. http://dx.doi.org/10.1002/hyp.7778.
|
Luo, X.D., Hoteit, I., 2011. Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalmanfilter. Monthly Weather Review 139, 3938−3953. http://dx.doi.org/10.1175/MWR-D-10-05068.1.
|
McLaughlin, D., Townley, L.R., 1996. A reassessment of the groundwater inverse problem. Water Resources Research 32(5), 1131−1161. http://dx.doi.org/10.1029/2006WR005144.
|
Nan, T.C., Wu, J.C., 2011. Groundwater parameter estimation using the ensemble Kalman filter with localization. Hydrogeology Journal 19(3), 547−561. http://dx.doi.org/10.1007/s10040-010-0679-9.
|
National Research Council, 2013. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites. The National Academies Press, Washington, D.C.
|
Panzeri, M., Riva, M., Guadagnini, A., Neuman, S.P., 2013. Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow. Water Resources Research 49(3), 1334−1344. http://dx.doi.org/10.1002/wrcr.20113.
|
Rubin, Y., Hubbard, S.S., 2007. Hydrogeophysics. Springer, Dordrecht.
|
Shaked, U., 1990. H∞ minimum error state estimation of linear stationary processes. IEEE Transactions on Automatic Control 35(5), 554−558. http://dx.doi.org/10.1109/9.53521.
|
Shaked, U., Theodor, Y., 1992. H∞ optimal estimation: A tutorial. In: Proceedings of the 31st IEEE Conference on Decision and Control, IEEE, Tucson, pp. 2278-2286.
|
Sun, A.Y., Morris, A.P., Mohanty, S., 2009. Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data. Advances in Water Resources 32(2), 280−292. http://dx.doi.org/10.1016/j.advwatres.2008.11.006.
|
Tian, Z.C., Li, Z.Z., Liu, G., Li, B.G, Ren, T.S., 2016. Soil water content determination with cosmic-ray neutron sensor: Correcting aboveground hydrogen effects with thermal/fast neutron ratio. Journal of Hydrology 540, 923−933. http://dx.doi.org/10.1016/j.jhydrol.2016.07.004.
|
Tong, J.X., Yang, J.Z., Hu, B.X., 2015. Analysis of soluble chemical transfer from soil to surface runoff and incomplete mixing parameter identification. Water Science and Engineering 8(3), 217−225. http://dx.doi.org/10.1016/j.wse.2015.04.011.
|
Wang, Y.F, Wang, B., Han, Y.Q., Zhu, M., Hou, Z.M., Zhou, Y., Liu, Y.D., Kou, Z., 2004. Variational data assimilation experiments of mei-yu front rainstorms in China. Advances in Atmospheric Sciences 21(4), 587−596. http://dx.doi.org/10.1007/BF02915726.
|
Yeh, T.J., Mao, D.Q, Zha, Y.Y, Wen, J.C, Wan, L., Hsu, K.C., Lee, C.H, 2015. Uniqueness, scale, and resolution issues in groundwater model parameter identification. Water Science and Engineering 8(3), 175−194. http://dx.doi.org/ 10.1016/j.wse.2015.08.002.
|
Yoneyama, J., 2013. Robust H-infinity filtering for sampled-data fuzzy systems. Fuzzy Sets and Systems, 217, 110−129. http://dx.doi.org/10.1016/j.fss.2012.08.014.
|
Yu, Z.B., Yang, T., Schwartz, F.W., 2014. Water issues and prospects for hydrological science in China. Water Science and Engineering 7(1), 1−4. http://dx.doi.org/10.3882/j.issn.1674-2370.2014.01.001.
|
Zhang, W.A., Dong, H., Guo, G., Yu, L., 2014. Distributed sampled-data H-infinity filtering for sensor networks with nonuniform sampling periods. IEEE Transactions on Industrial Informatics, 10(2), 871−881. http://dx.doi.org/10.1109/TII.2014.2299897.
|