Volume 11 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Jun Liu, Gloria Appiah-Sefah, Theresa Oteng Apreku. 2018: Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands. Water Science and Engineering, 11(1): 39-45. doi: 10.1016/j.wse.2017.05.005
Citation: Jun Liu, Gloria Appiah-Sefah, Theresa Oteng Apreku. 2018: Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands. Water Science and Engineering, 11(1): 39-45. doi: 10.1016/j.wse.2017.05.005

Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands

doi: 10.1016/j.wse.2017.05.005
Funds:  This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2009B17714) and the National Program on Key Basic Research Projects of China (Grant No. 2012CB719800).
More Information
  • Author Bio:

    496884531@qq.com (Jun Liu)

  • Corresponding author: 496884531@qq.com (Jun Liu)
  • Received Date: 2016-12-09
  • Rev Recd Date: 2017-05-03
  • Studies on the relationship between plant nitrogen content and soil nitrogen reduction under elevated CO2 conditions and with different nitrogen additions in wetland ecosystems are lacking. This study was meant to assess the effects of elevated CO2 concentrations and inorganic nitrogen additions on soil and plant nitrogen cycling. A cultured riparian wetland, alligator weeds, and two duplicated open top chambers (OTCs) with ambient (380 μmol/mol) and elevated (700 μmol/mol) CO2 concentrations at low (4 mg/L) and high (6 mg/L) nitrogen fertilization levels were used. The total plant biomass increased by 30.77% and 31.37% at low and high nitrogen fertilization levels, respectively, under elevated CO2 conditions. Plant nitrogen content decreased by 6.54% and 8.86% at low and high nitrogen fertilization levels, respectively. The coefficient of determination (R2) of soil nitrogen contents ranged from 0.81 to 0.96. Under elevated CO2 conditions, plants utilized the assimilated inorganic nitrogen (from the soil) for growth and other internal physiological transformations, which might explain the reduction in plant nitrogen content. A reduction in soil dissolved inorganic nitrogen (DIN) under elevated CO2 conditions might have also caused the reduction in plant nitrogen content. Reduced plant and soil nitrogen contents are to be expected due to the potential exhaustive use of inorganic nitrogen by soil microorganisms even before it can be made available to the soil and plants. The results from this study provide important information to help policy makers make informed decisions on sustainable management of wetlands. Larger-scale field work is recommended in future research.

     

  • loading
  • Altmann, D., Stief, P., Amann, R., de Beer, D., 2004. Nitrification in freshwater sediments as influenced by insect larvae: Quantification by microsensors and fluorescence in situ hybridization. Microbiology Ecology, 48(2), 145–153. https://doi.org/10.1007/s00248-003-2015-6.
    Balser, T.C., Kinzig, A.P., Firestone, M.K., 2001. Linking soil microbial communities and ecosystem functioning. Kinig, A., Pacala, A.S., Tilman, D., (eds.), The Functional Consequences of Biodiversity. Princeton University Press, Princeton, pp. 265–293.
    Balser, T.C., Firestone, M.K., 2005. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry, 73(2), 395–415. https://doi.org/10.1007/s10533-004-0372-y.
    Berntson, G.M., Bazzaz, F.A., 1998. Regenerating temperate forest microcosms in elevated CO2: Belowground growth and nitrogen cycling. Oecologia, 113(1), 115–125. https://doi.org/10.1007/s004420050359.
    Billings, S.A., Schaeffer, S.M., Zitzer, S., Charlet, T., Smith, S.D., Evans, R.D., 2002. Alterations of nitrogen dynamics under elevated CO2 in an intact Mojave Desert ecosystem: Evidence from 15N natural abundance. Oecologia, 131(3), 463–467. https://doi.org/10.1007/s00442-002-0898-4.
    Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., Ellis, T., Gerdol, R., Hájek, M., Hájek, T., et al., 2007. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of National Academy of Science, 103(51), 19386–19389. https://doi.org/10.1073/pnas.0606629104.
    Chen, Y., Zhou, Y., Yin, T.F., Liu, C.X., Luo, F.L., 2013. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PLOS ONE, 8(11), e81456. https://doi.org/10.1371/journal.pone.0081456.
    Cotrufo, M.F., Gorissen, A., 1997. Elevated CO2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytologist, 137(3), 421–431. https://doi.org/10.1046/j.1469-8137.1997.00839.x.
    Daepp, M., Suter, D., Almeida, P.F., Isopp, H., Hartwig, U.A., Frehner, M., Blum, H., Nösberger, J., Lüscher, A., 2000. Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biology, 6(7), 805–816. https://doi.org/10.1046/j.1365-2486.2000.00359.x.
    Deiglmayr, K., Philippot, L., Hartwig, U.A., Kandeler, H., 2004. Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium prenne and Trifolium repens under long-term elevated atmosphere CO2. FEMS Microbiology Ecology, 49(3), 445–454. https://doi.org/10.1016/j.femsec.2004.04.017.
    Dijkstra, F.A., Pendall, E., Mosier, A.R., King, J.Y., Milchunas, D.G., Morgan, J.A., 2008. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Functional Ecology, 22(6), 975–982. https://doi.org/10.1111/j.1365-2435.2008.01398.x.
    D?az, S., Grime, J.P., Harris, J., Mcpherson, E., 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature, 364(6438), 616–617. https://doi.org/10.1038/364616a0.
    Gill, R.A., Polley, H.W., Johnson, H.B., Anderson, L.J., Maherali, H., Jackson, R.B., 2002. Nonlinear grassland responses to past and future atmospheric CO2. Nature, 417(6886), 279–282. https://doi.org/10.1038/417279a.
    Guo, X.L., Lu, X.G., Tian, K., 2010. Nitrogen cycling in plant-soil systems in three freshwater wetland types along a water level gradient in the Sanjiang Plain, Northeast China. Fresenius Environmental Bulletin, 19(4), 1–8.
    Hagedorn, F., van Hees, P.A.W., Handa, I.T., Hättenschwiler, S., 2008. Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003026.
    Hu, S., Chapin, F.S., Firestone, M.K., Field, C.B., Chiarello, N.R., 2001. Nitrogen limitation of microbial decomposition in grassland under elevated CO2. Nature, 409(6817), 188–191. https://doi.org/10.1038/35051576.
    Hungate, B.A., Canadell, J., Chapin III, F.S., 1996. Plant species mediate changes in soil microbial N in response to elevated CO2. Ecology, 77(8), 2505–2515. https://doi.org/10.2307/2265749.
    Hungate, B.A., 1999. Ecosystems response to rising atmospheric CO2: Feedbacks through the N cycling. Carbon Dioxide and Environmental Stress, 265–285. https://doi.org/10.1016/B978-012460370-7/50011-5.
    Koizumi, H., Nakadai, T., Usami, Y., Satoh, M., Shiyomi, M., Oikawa, T., 1991. Effect of carbon dioxide concentration on microbial respiration in soil. Ecological Research, 6(3), 227–232. https://doi.org/10.1007/BF02347124.
    Luo, Q., Krumholz, L.R., Najar, F.Z., Peacock, A.D., Roe, B.A., White, D.C., Elshahed, M.S., 2005. Diversity of the Microeukaryotic community in sulfide-rich zodletone spring (Oklahoma). Environmental Microbiology, 71(10), 6175–6184. https://doi.org/10.1128/AEM.71.10.6175-6184.2005.
    Luo, Y.Q., Su, B., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., Mcmurtrie, R.E., Oren, R., Parton, W.J., et al., 2004. Progressive nitrogen limitation of ecosystem response to rising atmospheric carbon dioxide. Bioscience, 54(8), 731–739. https://doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2.
    Martín-Olmedo, P., Rees, R.M., Grace, J., 2002. The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics. Global Change Biology, 8(7), 643–657. https://doi.org/10.1046/j.1365-2486.2002.00499.x.
    Morgan, J.A., Mosier, A.R., Milchunas, D.G., Lecain, D.R., Nelson, J.A., Parton, W.J., 2004. CO2 enhance productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecological Applications, 14(1), 208–219. https://doi.org/10.1890/02-5213.
    Morgan, J.A., Milchunas, D.G., Lecain, D.R., West, M., Moisier, A.R., 2007. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proceedings of the National Academy of Science of the USA, 104(37), 14724–14729. https://doi.org/10.1073/pnas.0703427104.
    Norby, R.J., 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant & Soil, 165(1), 9–20. https://doi.org/10.1007/BF00009958.
    Pang, J., Zhu, J.G., Xie, Z.B., Liu, G., Zhang, Y.L., Chen, G.P., Zheng, Q., Cheng, L., 2006. A new explanation of the N concentration decrease in tissue of rice (Oryza sativa L.) exposed to elevated atmospheric pCO2. Environment and Experimental Botany, 57(1–2), 98–105. https://doi.org/10.1016/j.envexpbot.2005.04.004.
    Reich, P.B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelkerd, M., Lee, T., Wedin, D., Naeem, S., Bahauddin, D., et al., 2001. Plant diversity enhances ecosystem responses to elevated CO2 and N deposition. Nature, 410(6830), 809–812. https://doi.org/10.1038/35071062.
    Reich, P.B., Hungate, B.A., Luo, Y.Q., 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution and Systematics, 37, 611–636. https://doi.org/10.1146/annurev.ecolsys.37.091305.110039.
    van Groenigen, K.J., Six, J., Hungate, B.A., de Graff, M., van Breemer, N., van Kessel, C. 2006. Element interactions limit soil carbon storage. PNAS 103(17), 6571–6574. https://doi.org/10.1073/pnas.0509038103.
    Wang, A.O., Jiang, X.X., Zhang, Q.Q., Zhou, J., Li, H.L., Luo, F.L., Zhang, M.X., Yu, F.H., 2014. Nitrogen addition increases intraspecific competition in the invasive wetland plant Alternanthera philoxeroides, but not in its native congener Alternanthera sessilis. Plant Species Biology, 30(3), 1442–1984. https://doi.org/10.1111/1442-1984.12048.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (618) PDF downloads(682) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return