Volume 10 Issue 2
Apr.  2017
Turn off MathJax
Article Contents
Guo-qing Wang, Jian-yun Zhang, Yue-ping Xu, Zhen-xin Bao, Xin-yue Yang. 2017: Estimation of future water resources of Xiangjiang River Basin with VIC model under multiple climate scenarios. Water Science and Engineering, 10(2): 87-96. doi: 10.1016/j.wse.2017.06.003
Citation: Guo-qing Wang, Jian-yun Zhang, Yue-ping Xu, Zhen-xin Bao, Xin-yue Yang. 2017: Estimation of future water resources of Xiangjiang River Basin with VIC model under multiple climate scenarios. Water Science and Engineering, 10(2): 87-96. doi: 10.1016/j.wse.2017.06.003

Estimation of future water resources of Xiangjiang River Basin with VIC model under multiple climate scenarios

doi: 10.1016/j.wse.2017.06.003
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 41330854 and 41371063) and the National Key Research and Development Programs of China (Grants No. 2016YFA0601601 and 2016YFA0601501).
More Information
  • Corresponding author: jyzhang@nhri.cn (Jian-yun Zhang).
  • Received Date: 2017-01-02
  • Rev Recd Date: 2017-03-23
  • Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable
    infiltration capacity (VIC) model and 14 general circulation models' (GCMs') projections under the representative concentration pathway
    (RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to
    2050, with precipitation decrease in the 2020s and increase in the 2030s. The VIC model performs well for monthly discharge simulations with
    better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual
    discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may
    experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050
    are projected to decrease by 2.76% on average within the range from -7.81% to 7.40%. It is essential to consider the potential impact of climate
    change on water resources in future planning for sustainable utilization of water resources.

     

  • loading
  • Bao, Z.X., Zhang, J.Y, Liu, J.F, Wang, G.Q., Yan, X.L., Wang, X.J., Zhang, L.R., 2012. Sensitivity of hydrological variables to climate change in the Haihe River basin, China. Hydrological Processes, 26(15), 2294-2306. http://dx.doi.org/10.1002/hyp.8348.
    Chen, X.C., Xu, Y., Xu, C.H., Yao, Y., 2014. Assessment of precipitation simulations in China by CMIP5 multiple models. Progressus Inquisitiones DE Mutatione Climatis. 10(3), 217-225. http://dx.doi.org/10.3969/j.issn.1673-1719.2014.03.011 (in Chinese).
    Dai, A.G., Qian, T.T., Trenberth, K.E., Milliman, J.D., 2009. Changes in continental freshwater discharge from 1948 to 2004. Journal of Climate. 22, 2773-2792. http://dx.doi.org/10.1175/2008JCLI2592.1.
    Dai, A.G., 2013. Increasing drought under global warming in observations and models. Nature Climate Change. 3, 52-58. http://dx.doi.org/10.1038/nclimate1633.
    Ficklin, D.L., Luo, Y.Z., Luedeling, E., Zhang, M.H., 2009. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology. 374, 16-29. http://dx.doi.org/10.1016/j.jhydrol.2009.05.016.
    Fu, G.B., Barber, M.E., Chen, S.L., 2007. Impacts of climate change on regional hydrological regimes in the Spokane River Watershed. Journal of Hydrologic Engineering. 12(5), 452-461.http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:5(452).
    Gadeke, A., Holzel, H., Koch, H., Pohle, I., Grunewald, U., 2013. Analysis of uncertainties in the hydrological response of a model-based climate change impact assessment in a sub-catchment of the Spree River, Germany. Hydrological Process. 28(12), 3978-3998. http://dx.doi.org/10.1002/hyp.9933.
    Habets, F., Noilhan, J., Golaz, C., Goutorbe, J.P., Lacarrère, P., Leblois, E., Ledoux, E., Martin, E., Ottlé, C., Vidal-Madjar, D., 1999. The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area, Part I: Model and database. Journal of Hydrology. 217(1-2), 75–96. http://dx.doi.org/10.1016/S0022-1694(99)00019-0.
    Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.
    Intergovernmental Panel on Climate Change (IPCC). 2008. Climate Change and Water. Cambridge University Press, Cambridge.
    Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge.
    Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge.
    Jones, R.N., Chiew, F.H.S., Boughton,W.C., Zhang, L., 2006. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Advances in Water Resources. 29(10), 1419–1429. http://dx.doi.org/10.1016/j.advwatres.2005.11.001.
    Jung, W., Chang, H., 2011. Assessment of future runoff trends under multiple climate change scenarios in the Willamette River Basin, Oregon, USA. Hydrological Process. 25(2), 258-277. http://dx.doi.org/10.1002/hyp.7842.
    Kay, A.L., Davis, H.N., Bell, V.A., Jones, R.G., 2009. Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change. 92(1), 41-63. http://dx.doi.org/10.1007/s10584-008-9471-4.
    Khan, M.S., Coulibaly, P., 2010. Assessing hydrologic impact of climate change with uncertainty estimates: Bayesian Neural Network approach. Journal of Hydrometeorology. 11, 482-495. http://dx.doi.org/10.1175/2009JHM1160.1.
    Li, P., 2012. The present situation of water resources in Baicheng City and countermeasures to solve the problems of drought and water shortage. Jilin Water Resources, (4), 27-28,45. http://dx.doi.org/10.15920/j.cnki.22-1179/tv.2012.04.006 (in Chinese).
    Liang, X., Xie, Z.H., 2001. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface model. Advances in Water Resources. 24(9-10), 1173–1193. http://dx.doi.org/10.1016/S0309-1708(01)00032-X.
    Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research. 99(D7), 14415–14428. http://dx.doi.org/10.1029/94JD00483.
    Lohmann, D., Raschke, E., Nijssen, B., Lettenmaier, D.P., 1998. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Science Journal. 43(1), 131–141. http://dx.doi.org/10.1080/02626669809492107.
    McFarlane, D., Stone, R., Martens, S., Thomas, J., T., Silberstein, R., S., Ali, R., Hodgson, G., 2012. Climate change impacts on water yields and demands in south-western Australia. Journal of Hydrology. 475, 488-498. http://dx.doi.org/10.1016/j.jhydrol.2012.05.038.
    Meng, D.J., Mo, X.G., 2012. Assessing the effect of climate change on mean annual runoff in the Songhua River Basin, China. Hydrological Process. 26(7), 1050-1061. http://dx.doi.org/110.1002/hyp.8180.
    Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, Part 1: A discussion of principles. Journal of Hydrology. 10(3), 282–290.http://dx.doi.org/10.1016/0022-1694(70)90255-6.
    Parajuli, P.B., 2010. Assessing sensitivity of hydrologic response to climate change from forested watershed in Mississippi. Hydrological Process. 24(26), 3785-2797.http://dx.doi.org/10.1002/hyp.7793.
    Rasilla, D.F., Garmendia, C., García-Codron, J.C., 2013. Climate change projections of streamflow in the Iberian Peninsula. International Journal of Water Resources Development. 29(2), 184–200. http://dx.doi.org/10.1080/07900627.2012.721716.
    Tavakoli, M., Smedt, F.D., 2012. Impact of climate change on stream flow and soil moisture in the Vermilion Basin, Illinois. Journal of Hydrologic Engineering. 17(10), 1059-1070. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000546.
    Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485-498. http://dx.doi.org/10.1175/BAMS-D-11-00094.1
    Wang, G.Q., Zhang, J.Y., Jin, J.L., Pagano, T.C., Calow, R., Bao, Z.X., Liu, C.S., Liu, Y.L., Yan, X.L., 2012. Assessing water resources in China using PRECIS and a VIC model. Hydrology and Earth System Sciences. 16(1), 231-240. http://dx.doi.org/10.5194/hess-16-231-2012.
    Wang, G.Q., Yan, X.L., Zhang, J.Y., Liu, C.S., Jin, J.L., Liu, Y.L., Bao, Z.X., 2013a. Detecting evolution trends in the recorded runoff from the major rivers in China during 1950–2010. Journal of Water and Climate Change, 4(3), 252-264. http://dx.doi.org/10.2166/wcc.2013.021.
    Wang, G.Q., Zhang, J.Y., Xuan, Y.Q., Liu, J.F., Jin, J.L., Bao, Z.X., He, R.M., Liu, C.S., Liu, Y.L., Yan, X.L., 2013b. Simulating the impact of climate change on runoff in a typical river catchment of the Loess Plateau, China. Journal of Hydrometeorology. 14(5), 1553-1561. http://dx.doi.org/10.1175/JHM-D-12-081.1.
    Wang, G.Q., Wan, S.C., Bao, Z.X., Liu, C,S., 2015. Evaluating the performance of GCMs in historical simulations for the Xiang River Basin. In: Proceedings of CHES 2015. Hohai University Press, Nanjing, pp. 1189-1193.
    Wang, G.Q., Zhang, J.Y., 2015. Variation of water resources in the Huang-Huai-Hai areas and adaptive strategies to climate change. Quaternary International. 380-381, 180-186. http://dx.doi.org/10.1016/j.quaint.2015.02.005.
    Xiao, Y., Tang, S.H., Chen, H., Hu, L.J., 2013. Temporal and spatial trends of precipitation and temperature from 1960 to 2008 in Xiangjiang River Basin. Yangtze River. 44(3), 10-12, 32. http://dx.doi.org/10.3969/j.issn.1001-4179.2013.03.003 (in Chinese).
    Xu, Y.P., Zhang, X.J., Ran, Q.H., Tian, Y., 2013. Impact of climate change on hydrology of upper reaches of Qiantang River Basin, East China. Journal of Hydrology. 483, 51-60. http://dx.doi.org/10.1016/j.jhydrol.2013.01.004.
    Yu, Z., Lakhtakia, M.N., Yarnal, B., White, R.A., Miller, D.A., Frakes, B., Barron, E.J., Duffy, C., Schwartz, F.W., 1999. Simulating the river-basin response to atmospheric forcing by linking a mesoscale meteorological model and hydrologic model system. Journal of Hydrology, 218(1–2), 72-91. http://dx.doi.org/10.1016/S0022-1694(99)00022-0.
    Yu, Z.B., Jiang, P., Gautam, M.R., Zhang, Y., Acharya, K., 2015. Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections. Journal of Geophysical Research: Atmospheres. 120(7), 2676-2688. http://dx.doi.org/10.1002/2014JD022414.
    Zhang, J.Y., Wang, G.Q., 2007. Impacts of Climate Change on Hydrology and Water Resources. Science Press, Beijing (in Chinese).
    Zhang, J.Y., Wang, G.Q., Pagano, T.C., Jin, J.L., Liu, C.S., He, R.M., Liu, Y.L., 2013a. Using hydrologic simulation to explore the impacts of climate change on runoff in the Huaihe River basin of China. Journal of Hydrologic Engineering. 18(11), 1393-1399. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000581.
    Zhang, J.Y., Wang, G.Q., 2014. Variation of Stream Flow and Quantitative Identification for Attribution. Science Press, Beijing (in Chinese).
    Zhang, Q., Singh, V. P., Li, J.F., 2013b. Eco-hydrological requirements in arid and semi-arid regions: The Yellow River in China as a case study. Journal of Hydraulic Engineering. 18(16), 689-697. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000653.
    Zhu, Y., 2009. Analysis on water resources safety issues of Xiangjiang River Basin. Hunan Hydro & Power. (4), 35-37, 43. http://dx.doi.org/10.16052/j.cnki.hnslsd.2009.04.025 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (902) PDF downloads(1707) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return