Citation: | Yong-xing Hong, Wen Chen, Ji Lin, Jian Gong, Hong-da Cheng. 2017: Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method. Water Science and Engineering, 10(2): 107-114. doi: 10.1016/j.wse.2017.06.004 |
Bruch, J.C., Zyvoloski, G., 1974. Transient two-dimensional heat conduction problems solved by the finite element method. International Journal for Numerical Methods in Engineering 8(3), 481-494. http://dx.doi.org/10.1002/nme.1620080304.
|
Chen, S.H., Su, P.F., Shahrour, I., 2011. Composite element algorithm for the thermal analysis of mass concrete: Simulation of cooling pipes. International Journal of Numerical Methods for Heat and Fluid Flow 21(4), 434-447. http://dx.doi.org/10.1108/09615531111123100.
|
Chen, W., 2009. Singular boundary method: A novel, simple, meshfree, boundary collocation numerical method. Chinese Journal of Solid Mechanics 30(6), 592-599 (in Chinese).
|
Chen, W., Gu, Y., 2012. An improved formulation of singular boundary method. Advances in Applied Mathematics and Mechanics 4(5), 543-558. http://dx.doi.org/10.4208/aamm.11-m11118.
|
Chen, W., Zhang, J.Y., Fu, Z.J., 2014. Singular boundary method for modified Helmholtz equations. Engineering Analysis with Boundary Elements 44, 112-119. http://dx.doi.org/10.1016/j.enganabound.2014.02.007.
|
Ding, J.X., Chen, S.H., 2013. Simulation and feedback analysis of the temperature field in massive concrete structures containing cooling pipes. Applied Thermal Engineering 61(2), 554-562. http://dx.doi.org/10.1016/j.applthermaleng.2013.08.029.
|
Hauser, G., Kempkes, C., Olesen, B.W., 2000. Computer simulation of hydronic heating/cooling system with embedded pipes. In: ASHRAE Winter Meeting, 702-710. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Dallas.
|
Kim, J. K., Kim, K.H., Yang, J.K., 2001. Thermal analysis of hydration heat in concrete structures with pipe-cooling system. Computers and Structures 79(2), 163-171. http://dx.doi.org/10.1016/S0045-7949(00)00128-0.
|
Kogan, E.A., 1980. Stress relaxation in concrete of massive hydraulic structures. Hydrotechnical Construction 14(9), 916-920. http://dx.doi.org/10.1007/BF02305447.
|
Kwak, Y.H., Walewski, J., Sleeper, D., Sadatsafavi, H., 2014. What can we learn from the Hoover Dam project that influenced modern project management. International Journal of Project Management 32(2), 256-264. http://dx.doi.org/10.1016/j.ijproman.2013.04.002.
|
Li, J.P., Fu, Z.J., Chen, W., 2016. Numerical investigation on the obliquely incident water wave passing through the submerged breakwater by singular boundary method. Computers and Mathematics with Applications 71(1), 381-390. http:// dx.doi.org/10.1016/j.camwa.2015.11.025.
|
Lin, J., Chen, W., Chen, C.S., 2014. Numerical treatment of acoustic problems with boundary singularities by the singular boundary method. Journal of Sound and Vibration 333(14), 3177-3188. http://dx.doi.org/10.1016/j.jsv.2014.02.032.
|
Liu, X.H., Zhang, C., Chang, X.L., Zhou, W., Cheng, Y.G., Duan, Y., 2015. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering 78, 449-459. http://dx.doi.org/10.1016/j. applthermaleng.2014.12.050.
|
Qiang, S., Xie, Z.Q., Zhong, R., 2015. A p-version embedded model for simulation of concrete temperature fields with cooling pipes. Water Science and Engineering 8(3), 248-256. http://dx.doi.org/10.1016/j.wse.2015.08.001.
|
Šarler, B., 2009. Solution of potential flow problems by the modified method of fundamental solutions: Formulations with the single layer and the double layer fundamental solutions. Engineering Analysis with Boundary Elements 33(12), 1374-1382. http://dx.doi.org/10.1016/j.enganabound.2009.06.008.
|
Sasaki, S., Kono, A., Takahashi, S., 2014. Improvement in prediction accuracy by finite element methods of stretch-formed aluminum alloy sheets with a large aspect ratio. Procedia Engineering 81, 927-932. http://dx.doi.org/10.1016/j.proeng.2014.10.119.
|
Sato, T., Ichimiya, J., Ono, N., Hachiya, K., Hashimoto, M., 2005. On-chip thermal gradient analysis and temperature flattening for SoC design. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences 88(12), 3382-3389. http://dx.doi.org/10.1093/ietfec/e88-a.12.3382.
|
Wang, F.J., Chen, W., 2016. Accurate empirical formulas for the evaluation of origin intensity factor in singular boundary method using time-dependent diffusion fundamental solution. International Journal of Heat and Mass Transfer 103, 360-369. http:// dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.035.
|
Wei, X., Chen, W., Sun, L.L., Chen, B., 2015. A simple accurate formula evaluating origin intensity factor in singular boundary method for two-dimensional potential problems with Dirichlet boundary. Engineering Analysis with Boundary Elements 58, 151-165. http://dx.doi.org/10.1016/j.enganabound.2015.04.010.
|
Wei, X., Chen, B., Chen, S.S., Yin, S.H., 2016. An ACA-SBM for some 2D steady-state heat conduction problems. Engineering Analysis with Boundary Elements 71, 101-111. http://dx.doi.org/10.1016/j.enganabound.2016.07.012.
|
Yang, J., Hu, Y., Zuo, Z., Jin, F., Li, Q.B., 2012. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering 35(1), 145-156. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.016.
|
Zhang, X.X., Tao, X.M., Yick, K.L., Wang, X.C., 2004. Structure and thermal stability of microencapsulated phase-change materials. Colloid and Polymer Science 282(4), 330-336. http://dx.doi.org/10.1007/s00396-003-0925-y.
|
Zhu, B.F., 1991. Equivalent equation of heat conduction in mass concrete considering the effect of pipe cooling. Journal of Hydraulic Engineering 36(3), 28-34. http://dx.doi.org/10.13243/j.cnki.slxb.1991.03.004 (in Chinese).
|
Zhu, B.F., 1999. Effect of cooling by water flowing in nonmetal pipes embedded in mass concrete. Journal of Construction Engineering and Management 125(1), 61-68. http://dx.doi.org/10.1061/(ASCE)0733-9364(1999)125:1(61).
|