Citation: | Jun-feng Dai, Jia-zhou Chen, Guo-an Lü, Larry C. Brown, Lei Gan, Qin-xue Xu . 2017: Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region. Water Science and Engineering, 10(3): 209-216. doi: 10.1016/j.wse.2017.09.002 |
Ahmad, K., Gassman, P.W., Kanwar, R., 2002. Evaluation of the tile flow component of SWAT model under different management systems. In: Symposium of 2002 ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, St. Joseph. http://dx.doi.org/10.13031/2013.10416.
|
Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment, Part I: Model development. Journal of the American Water Resources Association 34(1), 73–89. http://dx.doi.org/10.1111/j.1752-1688.1998.tb05961.x
|
Beulke, S., Brown, C.D., Dubus, I.G., Harris, G., 2001. Evaluation of uncalibrated preferential flow models against data for isoproturon movement to drains through a heavy clay soil. Pest Management Science 57, 537–547. http://dx.doi.org/10.1002/ps.324.
|
Chanasyk, D.S., Mapfumo, E., Willms, W., 2003. Quantification and simulation of surface runoff from fescue grassland watershed. Agricultural Water Management 59(2), 137–153. http://dx.doi.org/10.1016/S0378-3774(02)00124-5.
|
Feyereisen, G.W., Strickland, T.C., Bosch, D.D., Sullivan, D.G., 2007. Evaluation of SWAT manual calibration and input parameter sensitivity in the little river watershed. Transactions of the ASABE 50(3), 843–855. http://dx.doi.org/10.13031/2013.23149.
|
Hamby, D.M., 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment 32(2), 135–154. http://dx.doi.org/10.1007/BF00547132.
|
Helton, J.C., 1993. Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliability Engineering and System Safety 42 (2–3), 327–367. http://dx.doi.org/10.1016/0951-8320(93)90097-I.
|
Krause, P., Boyle, D.P., BÄSE, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5, 89–97. http://dx.doi.org/10.5194/adgeo-5-89-2005.
|
Legates, D.R., McCabe, G.J., 1999. Evaluating use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1), 233–241. http://dx.doi.org/10.1029/1998WR900018.
|
Lenhart, T., Eckhardt, K., Fohrer, N., Frede, H.G., 2002. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth 27(9–10), 645–654. http://dx.doi.org/10.1016/S1474-7065(02)00049-9.
|
Mapfumo, E., Chanasyk, D.S., Willms, W.D., 2004. Simulating daily soil water under foothills fescue grazing with the soil and water assessment tool model (Alberta, Canada). Hydrological Processes 18(15), 2787–2800. http://dx.doi.org/10.1002/hyp.1493.
|
McCuen, R.H., 1973. The role of sensitivity analysis in hydrologic modeling. Journal of Hydrology 18(1), 37–53. http://dx.doi.org/10.1016/0022-1694(73)90024-3.
|
Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments. Tecnometrics 33(2), 161–174. http://dx.doi.org/10.1080/00401706.1991.10484804.
|
Ndomba, P.M., Magoma, D., Mtalo, F.W., Nobert, J., 2010. Application of SWAT in natural wetland catchments: A case of Rugezi Catchment in Rwanda. Nile Water Science and Engineering Journal 3(3), 1–13.
|
Neitsch, S.L., Arnold, J.G., Williams, J.R., 1999. Soil and Water Assessment Tool User’s Manual (Version 99.2). Grassland, Soil, and Water Research Laboratory, Agricultural Research Service, Temple.
|
Ritchie, J.T., 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research 8(5), 1204–1213. http://dx.doi.org/10.1029/WR008i005p01204.
|
Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F., 2005. Sensitivity analysis for chemical models. Chemical Reviews 105(7), 2811–2828. http://dx.doi.org/10.1021/cr040659d.
|
Schmalz, B., Fohrer, N., 2009. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model, Advances in Geosciences 21, 91–98. http://dx.doi.org/10.5194/adgeo-21-91-2009.
|
Spruill, C.A., Workman, S.R., Taraba, J.L., 2000. Simulation of daily and monthly stream discharge from small watershed using the SWAT model. Transactions of the ASAE 43(6), 1431–1439. http://dx.doi.org/10.13031/2013.3041.
|
van Griensven, A., Meisner, T., Grunwald, S., Bishop, T., Diluzio, M., Srinvasan, R., 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology 324(1–4), 10–23. http://dx.doi.org/10.1016/j.jhydrol.2005.09.008.
|
Williams, J.R., Jones, C.A., Dyke, P.T., 1984. A modeling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE 27(1), 129–144. http://dx.doi.org/10.13031/2013.32748.
|
Woznicki, S.A., Nejadhashemi, A.P., 2012. Sensitivity analysis of best management practices under climate change scenarios. Journal of the American Water Resources Association 48 (1), 90–112. http://dx.doi.org/10.1111/j.1752-1688.2011.00598.x.
|
1. | Jiao, M., Wang, Y., Hu, M. et al. Spatial deconstruction and differentiation analysis of early warning for ecological security in the Pearl River Delta, China. Sustainable Cities and Society, 2021. doi:10.1016/j.scs.2020.102557 | |
2. | Zeinolabedini Rezaabad, M., Ghazanfari, S., Salajegheh, M. ANFIS Modeling with ICA, BBO, TLBO, and IWO Optimization Algorithms and Sensitivity Analysis for Predicting Daily Reference Evapotranspiration. Journal of Hydrologic Engineering, 2020, 25(8): 04020038. doi:10.1061/(ASCE)HE.1943-5584.0001963 | |
3. | Yin, B., Guan, D., Zhou, L. et al. Sensitivity assessment and simulation of water resource security in karst areas within the context of hydroclimate change. Journal of Cleaner Production, 2020. doi:10.1016/j.jclepro.2020.120994 | |
4. | Waiyasusri, K., Chotpantarat, S. Watershed prioritization of kaeng lawa sub-watershed, khon kaen province using the morphometric and land-use analysis: A case study of heavy flooding caused by tropical storm podul. Water (Switzerland), 2020, 12(6): 1570. doi:10.3390/W12061570 |