Volume 11 Issue 2
Apr.  2018
Turn off MathJax
Article Contents
Saeideh Samani, Ming Ye, Fan Zhang, Yong-zhen Pei, Guo-ping Tang, Ahmed Elshall, Asghar A. Moghaddam. 2018: Impacts of prior parameter distributions on Bayesian evaluation of groundwater model complexity. Water Science and Engineering, 11(2): 89-100. doi: 10.1016/j.wse.2018.06.001
Citation: Saeideh Samani, Ming Ye, Fan Zhang, Yong-zhen Pei, Guo-ping Tang, Ahmed Elshall, Asghar A. Moghaddam. 2018: Impacts of prior parameter distributions on Bayesian evaluation of groundwater model complexity. Water Science and Engineering, 11(2): 89-100. doi: 10.1016/j.wse.2018.06.001

Impacts of prior parameter distributions on Bayesian evaluation of groundwater model complexity

doi: 10.1016/j.wse.2018.06.001
Funds:  This work was supported by the U.S. Department of Energy Early Career Research Program Award (Grant No. DE-SC0008272) and U.S. National Science Foundation (Grant No. 1552329).
More Information
  • Corresponding author: Ming Ye
  • Received Date: 2017-09-14
  • Rev Recd Date: 2018-01-10
  • This study used the marginal likelihood and Bayesian posterior model probability for evaluation of model complexity in order to avoid using over-complex models for numerical simulations. It focused on investigation of the impacts of prior parameter distributions (involved in calculating the marginal likelihood) on the evaluation of model complexity. We argue that prior parameter distributions should define the parameter space in which numerical simulations are made. New perspectives on the prior parameter distribution and posterior model probability were demonstrated in an example of groundwater solute transport modeling with four models, each simulating four column experiments. The models had different levels of complexity in terms of their model structures and numbers of calibrated parameters. The posterior model probability was evaluated for four cases with different prior parameter distributions. While the distributions substantially impacted model ranking, the model ranking in each case was reasonable for the specific circumstances in which numerical simulations were made. For evaluation of model complexity, it is thus necessary to determine the parameter spaces for modeling, which can be done by conducting numerical simulation and using engineering judgment based on understanding of the system being studied.

     

  • loading
  • Anamosa, P.R., Nkedi-Kizza, P., Blue, W.G.,  Sartain, J.B., 1990. Water movement through an aggregated, gravelly oxisol from Cameroon. Geoderma 46(1), 263-281. https://dx.org/10.1016/0016-7061(90)90019-6.
    Arkesteijn, L., Pande, S., 2013. On hydrological model complexity, its geometrical interpretations and prediction uncertainty. Water Resources Research  49(10), 7048-7063. https://dx.org/10.1002/wrcr.20529.
    Brooks, R.J., Tobias, A.M., 1996. Choosing the best model: Level of detail, complexity, and model performance. Mathematical and Computer Modeling 24(4), 1-14. https://dx.org/10.1016/0895-7177(96)00103-3.
    Clement, T.P., 2011. Complexities in hindcasting models: When should we say enough is enough? Ground Water 49(5), 620-629. https://dx.org/10.1111/j.1745-6584.2010.00765.x.
    Dai, H., Ye, M., 2015. Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation. Journal of Hydrology 528, 286-300. https://dx.org/10.1016/j.jhydrol.2015.06034.
    Dai, H., Chen, X.Y., Ye, M., Song, X.H., Zachara, J.M., 2017a. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling. Water Resources Research 53, 4327-4343. https://dx.org/10.1002/2016WR019756.
    Dai, H., Ye, M., Walker, A.P., Chen, X.Y., 2017b.  A new process sensitivity index to identify important system processes under process model and parametric uncertainty. Water Resources Research 53, 3476-3490. https://dx.org/10.1002/2016WR019715.
    Dai, Z.X., Wolfsberg, A., Reimus, P., Deng, H.L., Kwicklis, E., Ding, M., Ware, D., Ye, M., 2012. Identification of sorption processes and parameters for radionuclide transport in fractured rock. Journal of Hydrology 414, 220-230. https://dx.org/10.1016/j.jhydrol.2011.10.035.
    Elshall, A.S., Tsai, F.T.-C., 2014. Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under the Bayesian paradigm. Journal of Hydrology 517, 105-119. https://dx.org/10.1016/j.jhydrol.2014.05.027.
    Engelhardt, I., de Aguinaga, J.G., Mikat, H., Schüth, C., Liedl, R., 2014. Complexity vs. simplicity: Groundwater model ranking using information criteria. Ground Water 52(4), 573-583. https://dx.org/10.1111/gwat.12080.
    Gómez-Hernández, J., 2006. Complexity. Ground Water 44(6), 782-785. https://dx.org/10.1111/j.1745-6584.2006.00222.x.
    Hill, M.C., 2006. The practical use of simplicity in developing ground water models. Ground Water 44(6), 775-781. https://dx.org/10.1111/j.1745-6584.2006.00227.x.
    Hill, M.C., Tiedeman, C.R., 2007. Effective  Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty. John Wiley and Sons, Hoboken.
    Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T., 1999. Bayesian model averaging: A tutorial. Statistical Science 14(4), 382-417.
    Hunt, R.J., Zheng, C.M., 1999. Debating complexity in modeling. Eos Transactions of the American Geophysical Union 80(3), 29. https://dx.org/10.1029/99EO00025.
    Hunt, R.J., Doherty, J., Tonkin, M.J., 2007. Are models too simple? Arguments for increased parameterization. Ground Water 45(3), 254-262. https://dx.org/10.1111/j.1745-6584.2007.00316.x.
    Jakeman, A.J., Hornberger, G.M., 1993. How much complexity is warranted in a rainfall-runoff model? Water Resources Research 29(8), 2637-2649. https://dx.org/10.1029/93WR00877.
    Kashyap, R.L., 1982. Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Transactions on Pattern Analysis and Machine Intelligence 4(2), 99-104. https://dx.org/10.1109/TPAMI.1982.4767213.
    Kumar, P., 2011. Typology of hydrologic predictability. Water Resources Research  47(3), 167-177. https://dx.org/10.1029/2010WR009769.
    Liu, P.G., Elshall, A.S., Ye, M., Beerli, P., Zeng, X.K., Lu, D., Tao, Y.Z., 2016. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods. Water Resources Research 52(2), 734-758. https://dx.org/10.1002/2014WR016718.
    Lu, D., Ye, M., Neuman, S.P., 2011. Dependence of Bayesian model selection criteria and Fisher information matrix on sample size. Mathematical Geosciences 43(8), 971-993. https://dx.org/10.1007/s11004-011-9359-0.
    Lu, D., Ye, M., Meyer, P.D., Curtis, G.P., Shi, X.Q., Niu, X.F., Yabusaki, S.B., 2013. Effects of error covariance structure on estimation of model averaging weights and predictive performance. Water Resources Research 49(9), 6029-6047. https://dx.org/10.1002/wrcr.20441.
    Marshall, L., Nott, D., Sharma, A., 2005. Hydrological model selection: A Bayesian alternative. Water Resources Research 41(10), W10422. https://dx.org/10.1029/2004WR003719.
    Massoudieh, A., Lu, N., Liang, X., Nguyen, T.H., Ginn, T.R., 2013. Bayesian process-identification in bacteria transport in porous media. Journal of Contaminant Hydrology 153, 78-91. https://dx.org/10.1016/j.jconhyd.2013.08.004.
    Parker, J.C., van Genuchten, M.T., 1984. Determining Transport Parameters from Laboratory and Field Tracer Experiments, Virginia Agricultural Experiment Station Bulletin 84-3.Virginia Agricultural Experiment Station, Blacksburg.
    Schöniger, A., Wöhling, T., Samaniego, L., Nowak, W., 2014. Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence. Water Resources Research 50(12), 9484-9513. https://dx.org/10.1002/2014WR016062.
    Schöniger, A., Illman, W.A., Wöhling, T., Nowak, W., 2015. Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection. Journal of Hydrology 531, 96-110. https://dx.org/10.1016/j.jhydrol.2015.07.047.
    Schoups, G., van de Giesen, N.C., Savenije, H.H.G., 2008. Model complexity control for hydrologic prediction. Water Resources Research  44(12), 370-380. https://dx.org/10.1029/2008WR006836.
    Schoups, G., Vrugt, J.A., 2011. Bayesian Selection of Hydrological Models Using Sequential Monte Carlo Sampling. In: Poster AGU 2011.
    Simmons, C.T., Hunt, R.J., 2012. Updating the debate on model complexity. Geological Society of America 22(8), 28-29. https://dx.org/10.1130/GSATG150GW.1.
    Tang, G., Mayes, M.A., Parker, J.C., Yin, X.L., Watson, D.B., Jardine, P.M., 2009. Improving parameter estimation for column experiments by multi-model evaluation and comparison. Journal of Hydrology 376(3), 567-578. https://dx.org/10.1016/j.jhydrol.2009.07.063.
    Tang, G., Mayes, M.A., Parker, J.C., Jardine, P.M., 2010. CXTFIT/Excel: A modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments. Computers & Geosciences 36(9), 1200-1209. https://dx.org/10.1016/j.cageo.2010.01.013.
    Toride, N., Leij, F.J., van Genuchten, M.T.V, 1995. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, Research Report, No. 137. U.S. Department of Agriculture, Riverside.
    Ye, M., Neuman, S.P., Meyer, P.D., Pohlmann, K.F., 2005. Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff. Water Resources Research 41(12), 4203-4206. https://dx.org/10.1029/2005WR004260.
    Ye, M., Meyer, P.D., Neuman, S.P., 2008a. On model selection criteria in multimodel analysis. Water Resources Research 44(3), 380-384. https://dx.org/10.1029/2008WR006803.
    Ye, M., Pohlmann, K.F., Chapman, J.B., 2008b. Expert elicitation of recharge model probabilities for the Death Valley regional flow system. Journal of Hydrology 354(1-4), 102-115. https://dx.org/10.1016/j.jhydrol.2008.03.001.
    Ye, M., Lu, D., Neuman, S.P., Meyer, P.D., 2010. Comment on “Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window” by Frank T.-C. Tsai and Xiaobao Li. Water Resources Research 46(2), 2802. https://dx.org/10.1029/2007WR006576.
    Ye, M., Wang, L.Y., Pohlmann, K.F., Chapman, J.B., 2016. Evaluating groundwater interbasin flow using multiple models and multiple types of data. Ground Water  54(6), 805-817. https://dx.org/10.1111/gwat.12422.
    Young, P., Parkinson, S., Lees, M., 1996. Simplicity out of complexity in environmental modeling: Occam’s Razor revisited. Journal of Applied Statistics 23(2-3), 165-210. https://dx.org/10.1080/02664769624206.
    Zeng, X.K., Ye, M., Burkardt, J.C., Wu, J., Wang, D., Zhu, X.B., 2016a. Evaluating two sparse grid surrogates and two adaptation criteria for groundwater Bayesian uncertainty analysis. Journal of Hydrology 535, 120-134.  https://dx.org/10.1016/j.jhydrol.2016.01.058.
    Zeng, X.K., Wu, J., Wang, D., Zhu, X.B., Long, Y.Q., 2016b. Assessing Bayesian model averaging uncertainty of groundwater modeling based on information entropy method. Journal of Hydrology 538, 689-704. https://doi.org/10.1016/j.jhydrol.2016.04.038.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (636) PDF downloads(895) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return