Volume 12 Issue 2
Jun.  2019
Turn off MathJax
Article Contents
Xiao-dong Liu, Ling-qi Li, Peng Wang, Zu-lin Hua, Li Gu, Yuan-yuan Zhou, Lu-ying Chen. 2019: Numerical simulation of wind-driven circulation and pollutant transport in Taihu Lake based on a quadtree grid. Water Science and Engineering, 12(2): 108-114. doi: 10.1016/j.wse.2019.05.001
Citation: Xiao-dong Liu, Ling-qi Li, Peng Wang, Zu-lin Hua, Li Gu, Yuan-yuan Zhou, Lu-ying Chen. 2019: Numerical simulation of wind-driven circulation and pollutant transport in Taihu Lake based on a quadtree grid. Water Science and Engineering, 12(2): 108-114. doi: 10.1016/j.wse.2019.05.001

Numerical simulation of wind-driven circulation and pollutant transport in Taihu Lake based on a quadtree grid

doi: 10.1016/j.wse.2019.05.001
Funds:  This work was supported by the National Nature Science Foundation of China (Grants No. 51739002 and 51479064), the World-Class Universities (Disciplines) and Characteristic Development Guidance Funds for the Central Universities, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions (Grant No. PPZY2015A051).
More Information
  • Corresponding author: Zu-lin Hua
  • Received Date: 2019-01-23
  • Rev Recd Date: 2019-04-11
  • In this study, a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid. This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important small-scale localized flow features. The quadtree grid was created by domain decomposition. The governing equations were solved using the finite volume method, and the normal fluxes of mass, momentum, and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme. The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth. The computed values were in agreement with analytical data. The results indicate that the quadtree grid has fine local resolution and high efficiency, and is convenient for local refinement. It is clear that the quadtree grid model is effective when applied to complex flow domains. Finally, the model was used to calculate the flow field and concentration field of Taihu Lake, demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.

     

  • loading
  • An, H., Yu, S., 2014. An accurate multidimensional limiter on quadtree grids for shallow water flow simulation. Journal of Hydraulic Research 52(4), 565-574. https://doi.org/10.1080/00221686.2013.878404.
    Bennett, J.R., Clites, A.H., 1987. Accuracy of trajectory calculation in a finite-difference circulation model. Journal of Computational Physics 68(2), 272-282. https://doi.org/10.1016/0021-9991(87)90058-1.
    Borthwick, A.G.L., Leon, S.C., Jozsa, J., 2001. Adaptive quadtree model of shallow-flow hydrodynamics. Journal of Hydraulic Research 39(4), 413-424. https://doi.org/10.1080/00221680109499845.
    Cho, Y.-S., Park, K.-Y., Lin, T.-H., 2004. Run-up heights of nearshore tsunamis based on quadtree grid system. Ocean Engineering 31(8), 1093-1109. https://doi.org/10.1016/j.oceaneng.2003.10.011.
    Copeland, G., Monteiro, T., Couch, S., Borthwick, A., 2003. Water quality in Sepetiba Bay, Brazil. Marine Environmental Research 55(5), 385-408. https://doi.org/10.1016/S0141-1136(02)00289-1.
    Dadone, A., Grossman, B., 2007. Ghost-cell method for analysis of inviscid three-dimensional flows on Cartesian-grids. Computers and Fluids 36(10), 1513-1528. https://doi.org/10.1016/j.compfluid.2007.03.013.
    DeZeeuw, D., Powell, K.G., 1993. An adaptively refined Cartesian mesh solver for the Euler equations. Journal of Computational Physics 104(1), 56-68. https://doi.org/10.1006/jcph.1993.1007.
    Gáspár, C., Józsa, J., Sarkkula, J., 1994. Shallow lake modelling using quadtree-based grids. In: Proceedings of the 10th Conference on Computational Methods in Water Resources. Heidelberg, pp. 1053-1063. https://doi.org/10.1007/978-94-010-9204-3_127.
    Greaves, D.M., Borthwick, A.G.L., Wu, G.X., Eatock Taylor, R., 1997. A moving boundary finite element method for fully nonlinear wave simulations. Journal of Ship Research 41(3), 181-194.
    Greaves, D.M., Borthwick, A.G.L., 1998. On the use of adaptive hierarchical meshes for numerical simulation of separated flows. International Journal for Numerical Methods in Fluids 26(3), 303-322. https://doi.org/10.1002/(SICI)1097-0363(19980215)26:3<303::AID-FLD643>3.0.CO;2-Y.
    Hemker, P.W., Spekreijse, S.P., 1985. Multigrid solution of the steady Euler equations. In: Braess, D., Hackbusch, W., Trottenberg, U., eds., Advances in Multi-Grid Methods. Vieweg+Teubner Verlag, Wiesbaden, pp. 33-44. https://doi.org/10.1007/978-3-663-14245-4_4.
    Hua, Z., Liu, X., Wang, T., Lu, X., 2003. Application of the nested adaptive quadtree grids FDS numerical model to the pollution zone for inshore water region. Advances in Water Science 14(2), 305-310 (in Chinese). https://doi.org/10.3321/j.issn:1001-6791.2003.03.011.
    Jiang, H.F., 2014. Triangle interpolation on discrete point set. Applied Mechanics and Materials 580-583, 2872-2875. https://doi.org/10.4028/www.scientific.net/AMM.580-583.2872.
    Kranenburg, C., 1992. Wind-driven chaotic advection in a shallow model lake. Journal of Hydraulic Research 30(1), 29-46. https://doi.org/10.1080/00221689209498945.
    Liang, Q.H., Borthwick, A.G.L., Stelling, G., 2004. Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids. International Journal for Numerical Methods in Fluids 46(2), 127-162. https://doi.org/10.1002/fld.748.
    Liang, Q.H., Zang, J., Borthwick, A.G.L., Taylor, P.H., 2007. Shallow flow simulation on dynamically adaptive cut cell quadtree grids. International Journal for Numerical Methods in Fluids 53(12), 1777-1799. https://doi.org/10.1002/fld.1363.
    Lima, A., De Vivo, B., Cicchella, D., Cortini, M., Albanese, S., 2003. Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region. Applied Geochemistry 18(12), 1853-1865. https://doi.org/10.1016/S0883-2927(03)00083-0.
    Rogers, B., Fujihara, M., Borthwick, A.G.L., 2001. Adaptive Q-tree Godunov-type scheme for shallow water equations. International Journal for Numerical Methods in Fluids 35(3), 247-280. https://doi.org/10.1002/1097-0363(20010215)35:3<247::AID-FLD89>3.0.CO;2-E.
    Samet, H., 1990. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley. 
    Skoula, Z.D., Borthwick, A.G.L., Moutzouris, C. I., 2006. Godunov-type solution of the shallow water equations on adaptive unstructured triangular grids. International Journal of Computational Fluid Dynamics 20(9), 621-636. https://doi.org/10.1080/10618560601088327.
    Sleigh, P.A., Gaskell, P.H., Berzins, M., Wright, N.G., 1998. An unstructured finite-volume algorithm for predicing flow in rivers and estuaries. Comput Fluids 27(4), 479-508. https://doi.org/10.1016/S0045-7930(97)00071-6.
    Surhone, L.M., Tennoe, M.T., Henssonow, S.F., 2013. Nearest-neighbor Interpolation. Betascript Publishing, Mauritius.
    Tait, A., Henderson, R., Turner, R., Zheng, X.G. 2006. Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology 26(14), 2097-2115. https://doi.org/10.1002/joc.1350.
    Tavakoli, R., 2008. CartGen: Robust, efficient and easy to implement uniform/octree/embedded boundary Cartesian grid generator. International Journal for Numerical Methods in Fluids 57(12), 1753-1770. https://doi.org/10.1002/fld.1685.
    Yerry, M.A., Shephard, M.S., 1983. A modified quadtree approach to finite element mesh generation. IEEE Computer Graphics and Applications 3(1), 39-46. https://doi.org/10.1109/MCG.1983.262997.
    Zhang, M.L., Wu, W.M., Lin, L.H., Yu, J.N., 2012. Coupling of wave and current numerical model with unstructured quadtree grid for nearshore coastal waters. Science China Technological Sciences 55(2), 568-580. https://doi.org/10.1007/s11431-011-4643-2.
    Zhao, D.H., Shen, H.W., Tabios III, G.Q., Lai, J.S., Tan W.Y.,1994. Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering 120(7), 863-883. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:7(863).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (394) PDF downloads(402) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return