Volume 12 Issue 2
Jun.  2019
Turn off MathJax
Article Contents
Li Yan, Men-wu Wu, Ying Chen, Yao Wu, Tian-sheng Wu. 2019: Flume experimental study on evolution of a mouth bar under interaction of floods and waves. Water Science and Engineering, 12(2): 162-168. doi: 10.1016/j.wse.2019.05.005
Citation: Li Yan, Men-wu Wu, Ying Chen, Yao Wu, Tian-sheng Wu. 2019: Flume experimental study on evolution of a mouth bar under interaction of floods and waves. Water Science and Engineering, 12(2): 162-168. doi: 10.1016/j.wse.2019.05.005

Flume experimental study on evolution of a mouth bar under interaction of floods and waves

doi: 10.1016/j.wse.2019.05.005
Funds:  The work was supported by the Changjiang River Scientific Research Institute (CRSRI) Open Research Program (Grant No. CKWV2017499/KY) and the National Natural Science Foundation of China (Grant No. 51779280).
More Information
  • Corresponding author: Men-wu Wu
  • Received Date: 2018-10-23
  • Rev Recd Date: 2019-04-20
  • Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary, a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar. The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction. The results show that floods with different return periods had significant influences on the evolution of the river mouth bar. Particularly on the inner slope of the mouth bar, the sediment was substantially active and moveable. The inner slope and the bar crest tended to be remarkably scoured. The erosion was intensified with the increase of the magnitude of floods. Moreover, the bar crest moved seawards, while the elevation of the bar crest barely changed. Under the flood-wave interaction, a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found. The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods, while more deposition was found on the crest of the mouth bar in this case.

     

  • loading
  • Anthony, E.J., 2015. Wave influence in the construction, shaping and destruction of river deltas: A review. Marine Geology, 361, 53-78.   https://doi.org/10.1016/j.margeo.2014.12.004.
    Cai, H., Savenije, H.H.G., Yang, Q., Ou, S., 2012. Influence of river discharge and dredging on tidal wave propagation: Modaomen Estuary case. Journal of Hydraulic Engineering, 138(10), 885-896. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000594.
    Canestrelli, A., Nardin, W., Edmonds, D., Fagherazzi, S., Slingerland, R., 2014. Importance of frictional effects and jet instability on the morphodynamics of river mouth bars and levees. Journal of Geophysical Research, 119(1), 509-522. https://doi.org/10.1002/2013JC009312.
    Edmonds, D.A., Slingerland, R.L., 2007. Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks. Journal of Geophysical Research: Earth Surface, 112(F2). https://doi.org/10.1029/2006JF000574.
    Edmonds, D.A., Hoyal, D.C.J.D., Sheets, B.A., Slingerland, R.L., 2009. Predicting delta avulsions: Implications for coastal wetland restoration. Geology, 37(8), 759-762. https://doi.org/10.1130/G25743A.1.
    Fagherazzi, S., Edmonds, D.A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., Jerolmack, D.J., Mariotti, G., Rowland, J.C., Slingerland, R.L., 2015. Dynamics of river mouth deposits. Reviews of Geophysics, 53(3), 642-672. https://doi.org/10.1002/2014RG000451.
    Gong, W., Shen, J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China. Continental Shelf Research, 31(7-8), 769-788. https://doi.org/10.1016/j.csr.2011.01.011.
    He, Y., Lu, C., Deng, J., 2016. Evolution of Modaomen bar at Pearl River Estuary. In: Proceedings of the 13th International Symposium on River Sedimentation. CRC Press, Stuttgart.
    He, Y., Ye, R.H., Tang, C.W., Yang, L.Z., 2018. Relationship between the morphological evolution of the river mouth bar and fluvial input in the Modaomen Estuary. Environmental Earth Sciences, 77(19), 668. https://doi.org/10.1007/s12665-018-7856-x.
    He, Y., Wu, Y., Lu, C., Wu, M.W., Chen, Y., Yang, Y.G., 2019. Morphological change of the mouth bar in relation to natural and anthropogenic interferences. Continental Shelf Research, 175, 42-52. https://doi.org/10.1016/j.csr.2019.01.015.
    Hoitink, A.J., Jay, D.A., 2016. Tidal River Dynamics: Implications for deltas. Reviews of Geophysics, 54(1), 240-272. https://doi.org/10.1002/2015RG000507.
    Hu, D., Li, C.C., Wang, S.J., 2005. Study on evolutional processes of the sand bar in Modaomen Estuary. Journal of Sediment Research, (4), 71-75. https://doi.org/10.3321/j.issn:0468-155X.2005.04.012.
    Jia, L.W., Pan, S.Q., Wu, C.Y., 2013. Effects of the anthropogenic activities on the morphological evolution of the Modaomen Estuary, Pearl River Delta, China. China Ocean Engineering, 27(6), 795-808. https://doi.org/10.1007/s13344-013-0065-1.
    Jia, L.W., Wen, Y., Pan, S.Q., Liu, J.T., He, J.W., 2015.Wave-current interaction in a river and wave dominant estuary: A seasonal contrast. Applied Ocean Research, 52, 151-166. https://doi.org/10.1016/j.apor.2015.06.004.
    Kim, W., 2012. Geomorphology: Flood-built land. Nature Geoscience, 5(8), 521-522. https://doi.org/10.1038/ngeo1535.
    Kuenzer, C., Van Beijma, S., Gessner, U., Dech, S., 2014. Land surface dynamics and environmental challenges of the Niger Delta, Africa: Remote sensing-based analyses spanning three decades (1986-2013). Applied Geography, 53, 354-368. https://doi.org/10.1016/j.apgeog.2014.07.002.
    Leonardi, N., Canestrelli, A., Sun, T., Fagherazzi, S., 2013. Effect of tides on mouth bar morphology and hydrodynamics. Journal of Geophysical Research: Oceans, 118(9), 4169-4183. https://doi.org/10.1002/jgrc.20302.
    Maloney, J.M., Bentley, S.J., Xu, K.H., Obelcz, J., Georgiou, I.Y., Miner, M.D., 2018. Mississippi River subaqueous delta is entering a stage of retrogradation. Marine Geology, 400, 12-23. https://doi.org/10.1016/j.margeo.2018.03.001.
    Mao, Q.W., Shi, P., Yin, K.D., Gan, J.P., Qi, Y.Q., 2004. Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research, 24(16), 1797-1808. https://doi.org/10.1016/j.csr.2004.06.008.
    Ministry of Water Resources of China (MWRC), 2006. Hydrological Yearbooks for the Pearl River. MWRC, Beijing.
    Nardin, T.R., Feldman, H.R., Carter, J.B., 2013a. Stratigraphic Architecture of a Large-scale Point-bar Complex in the McMurray Formation: Syncrude's Mildred Lake Mine, Alberta, Canada. American Association of Petroleum Geologist, Tulsa, pp. 273-311. https://doi.org/10.1306/13371583St643555.
    Nardin, W., Fagherazzi, S., 2012. The effect of wind waves on the development of river mouth bars. Geophysical Research Letters, 39(12). https://doi.org/10.1029/2012GL051788.
    Nardin, W., Mariotti, G., Edmonds, D.A., Guercio, R., Fagherazzi, S., 2013b. Growth of river mouth bars in sheltered bays in the presence of frontal waves. Journal of Geophysical Research, 118(2), 872-886. https://doi.org/10.1002/jgrf.20057.
    Nienhuis, J.H., Ashton, A.D., Nardin, W., Fagherazzi, S., Giosan, L., 2016. Alongshore sediment bypassing as a control on river mouth morphodynamics. Journal of Geophysical Research, 121(4), 664-683. https://doi.org/10.1002/2015JF003780.
    Romans, B.W., Castelltort, S., Covault, J.A., Fildani, A., Walsh, J.P., 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153, 7-29. https://doi.org/10.1016/j.earscirev.2015.07.012.
    Shaw, J.B., Mohrig, D., Wagner, R.W., 2016. Flow patterns and morphology of a prograding river delta. Journal of Geophysical Research: Earth Surface, 121(2), 372-391. https://doi.org/10.1002/2015JF003570.
    Sun, T., Paola, C., Parker, G., Meakin, P., 2002. Fluvial fan deltas: Linking channel processes with large-scale morphodynamics. Water Resources Research, 38(8), 26-1−26-10. https://doi.org/10.1029/2001wr000284.
    Tan, C., Huang, B.S., Gong, W.P., Qiu, J., 2013. The dynamics of flood releasing and its effects on the morphological evolution of the mouth bar in the Modaomen Estuary of the Pearl River. Journal of Hydraulic Engineering, (9), 1023-1029 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.2013.09.005.
    Wang, S.J., Yi, X.B., Li, C.C., 2008. Variation of flow and sediment and response of morphology in Modaomen Estuary of Xijiang River. Ocean Engineering, 26(3), 51-57 (in Chinese). https://doi.org/10.16483/j.issn.1005-9865.2008.03.007.
    Wright, L.D., Coleman, J.M., 1974. Mississippi River mouth processes: Effluent dynamics and morphologic development. The Journal of Geology, 82(6), 751-778. https://doi.org/10.1086/628028.
    Wright, L.D., 1977. Sediment transport and deposition at river mouths: A synthesis. Geological Society of America Bulletin, 88(6), 857-868. https://doi.org/10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2.
    Wu, Y., Zhang, W., Zhu, Y.L., Zheng, J.H., Ji, X.M., He, Y., Xu, Y.W., 2018. Intra-tidal division of flow and suspended sediment at the first order junction of the Pearl River Network. Estuarine, Coastal and Shelf Science, 209, 169-182. https://doi.org/10.1016/j.ecss.2018.05.030.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (336) PDF downloads(605) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return