Volume 12 Issue 2
Jun.  2019
Turn off MathJax
Article Contents
Ji-xiang Huo, Fu-heng Ma, Xiao-lei Ji. 2019: Porosity and permeability variations of a dam curtain during dissolution. Water Science and Engineering, 12(2): 155-161. doi: 10.1016/j.wse.2019.05.007
Citation: Ji-xiang Huo, Fu-heng Ma, Xiao-lei Ji. 2019: Porosity and permeability variations of a dam curtain during dissolution. Water Science and Engineering, 12(2): 155-161. doi: 10.1016/j.wse.2019.05.007

Porosity and permeability variations of a dam curtain during dissolution

doi: 10.1016/j.wse.2019.05.007
Funds:  This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51609150), the National Key Research and Development Program of China (Grant No. 2018YFC0407103), and the National Natural Science Foundation of China (Grant No. 51779155).
More Information
  • Corresponding author: Ji-xiang Huo
  • Received Date: 2018-10-11
  • Rev Recd Date: 2019-04-20
  • During reservoir operation, the erosion effects of groundwater change the porosity and permeability of the dam curtain, causing changes to the seepage field. To understand where the changes take place and to what degree the porosity and permeability change, a multi-field coupling model was built and solved. The model takes into account seepage, solution concentration, and solid structure. The model was validated using uplift pressure monitoring data. Then, the variations in curtain porosity, seepage flow, and loss quantity of Ca(OH)2 were calculated. The key time nodes were obtained through curve fitting of the variation of seepage flow with the BiDoseResp function. The results showed that the model could reflect the attenuation trend of curtain performance well. The process and position of the erosion were not homogeneous. Although erosion mainly occurred at the top and bottom of the curtain, it was most developed at the top. The erosion effects developed slowly during the early stage, much fast during the middle and late stages, and culminated in complete dissolution. The model results and the daily monitoring data can provide a scientific basis for the safe operation and management of reservoirs.

     

  • loading
  • Appelo, C.A.J., Rolle, M., 2010. PHT3D: A reactive multicomponent transport model for saturated porous media. Groundwater, 48(5), 627-632. https://doi.org/10.1111/j.1745-6584.2010.00732.x.
    Bernstone, C., Westberg, M., Jeppsson, J., 2009. Structural assessment of a concrete dam based on uplift pressure monitoring. Journal of Geotechnical and Geoenvironmental Engineering, 135(1), 133-142. https://doi.org/10.1061/(asce)1090-0241(2009)135:1(133).
    Catherine C., Gouze P., Bernard, D., 2004. Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophysical Research Letters, 31(24), L24603. https://doi.org/10.1029/2004gl021572.
    Cochepin, B., Trotignon, L., Bildstein, O., Steefel, C.I., Lagneau, V., van der Lee, J., 2008. Approaches to modelling coupled flow and reaction in a 2D cementation experiment. Advances in Water Resources, 31(12), 1540-1551. https://doi.org/10.1016/j.advwatres.2008.05.007.
    Gouze, P., Luquot, L., 2011. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. Journal of Contaminant Hydrology, 120-121(1), 45-55. https://doi.org/10.1016/j.jconhyd.2010.07.004.
    Hummer, D.R., Heaney, P.J., 2015. MinKin: A kinetic modeling program for the precipitation, dissolution, and phase transformation of minerals in aqueous solution. Chemical Geology, 405(5), 112-122. https://doi.org/10.1016/j.chemgeo.2015.03.019.
    Huo, J.-X., Song, H.-Z., Luo, L., 2015. Investigation of groundwater chemistry at a dam site during its construction: A case study of Xiangjiaba Dam, China. Environmental Earth Sciences, 74(3), 2451-2461. https://doi.org/10.1007/s12665-015-4261-6.
    Kang, Q., Chen, L., Valocchi, A.J., Viswanathan, H.S., 2014. Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. Journal of Hydrology, 517(Supplement C), 1049-1055. https://doi.org/10.1016/j.jhydrol.2014.06.045.
    Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., et al., 2012. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. https://doi.org/10.1007/s12665-012-1546-x.
    Li, X.C., Zhong, D.H., Ren, B.Y., Fan, G.C., Cui, B., 2019. Prediction of curtain grouting efficiency based on ANFIS. Bulletin of Engineering Geology and the Environment, 78(1), 281-309. https://doi.org/10.1007/s10064-017-1039-y.
    Lichtner, P., Karra, S., Hammond, G., Lu, C., Bisht, G., Kumar, J., Mills, R., Andre, B., 2015. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes. Los Alamos National Laboratory (LANL). https://doi.org/10.2172/1168703.
    Luquot, L., Rodriguez, O., Gouze, P., 2014. Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes. Transport in Porous Media, 101(3), 507-532. https://doi.org/10.1007/s11242-013-0257-4.
    Maheshwari, P., Ratnakar, R.R., Kalia, N., Balakotaiah, V., 2013. 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chemical Engineering Science, 90(Supplement C), 258-274. https://doi.org/10.1016/j.ces.2012.12.032.
    Mahtabi, G., Taran, F., 2019. Effect of weep hole and cut-off wall on hydraulic gradient and uplift pressure under a diversion dam. Sādhanā, 44(4). https://doi.org/10.1007/s12046-019-1083-3.
    Meeussen, J.C.L., 2003. ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Environmental Science & Technology, 37(6), 1175-1182. https://doi.org/10.1021/es025597s.
    Nogues, J.P., Fitts, J.P., Celia, M.A., Peters, C.A., 2013. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resources Research, 49(9), 6006-6021. https://doi.org/10.1002/wrcr.20486.
    Parkhurst, D.L., Appelo, C.A.J., 2013. Description of input and examples for PHREEQC Version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43. U.S. Department of the Interior, U.S.  Geological Survey. https://doi.org/10.3133/tm6a43. 
    Rötting, T.S., Luquot, L., Carrera, J., Casalinuovo, D.J., 2015. Changes in porosity, permeability, water retention curve and reactive surface area during carbonate rock dissolution. Chemical Geology, 403(Supplement C), 86-98. https://doi.org/10.1016/j.chemgeo.2015.03.008.
    Ruiz-Agudo, E., Kudlacz, K., Putnis, C.V., Putnis, A., Rodriguez-Navarro, C., 2013. Dissolution and carbonation of portlandite
    [Ca(OH)2] single crystals. Environmental Science & Technology, 47(19), 11342-11349. https://doi.org/10.1021/es402061c.
    Steefel, C.I., DePaolo, D.J., Lichtner, P.C., 2005. Reactive transport modeling: An essential tool and a new research approach for the earth sciences. Earth and Planetary Science Letters, 240(3), 539-558. https://doi.org/10.1016/j.epsl.2005.09.017.
    Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., et al., 2015. Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3), 445-478. https://doi.org/10.1201/9781315369044-19.
    Tsai, C.-H.P., Yeh, G.-T.G., Ni, C.-F., 2013. HYDROGEOCHEM 6.0: A Model to Couple Thermal-Hydrology-Mechanics-Chemical (THMC) Processes User Guide. National Central University, Jhongli.
    Wang, E.Z., Wang, H.T., Deng, X.D., 2001. Pipe to represent hole: Numerical method for simulating single drainage hole in rock-masses. Chinese Journal of Rock Mechanics and Engineering, 20(3), 346-349 (in Chinese). https://doi.org/10.3321/j.issn:1000-6915.2001.03.015.
    Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K., 2011. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Computers & Geosciences, 37(6), 763-774. https://doi.org/10.1016/j.cageo.2010.10.007.
    Zhao, C., Hobbs, B.E., Ord, A., Peng, S., 2010. Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous media. Transport in Porous Media, 82(2), 317-335. https://doi.org/10.1007/s11242-009-9427-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (385) PDF downloads(397) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return