Volume 12 Issue 2
Jun.  2019
Turn off MathJax
Article Contents
Jaan Hui Pu, Awesar Hussain, Ya-kun Guo, Nikolaos Vardakastanis, Prashanth R. Hanmaiahgari, Dennis Lam. 2019: Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction. Water Science and Engineering, 12(2): 121-128. doi: 10.1016/j.wse.2019.06.003
Citation: Jaan Hui Pu, Awesar Hussain, Ya-kun Guo, Nikolaos Vardakastanis, Prashanth R. Hanmaiahgari, Dennis Lam. 2019: Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction. Water Science and Engineering, 12(2): 121-128. doi: 10.1016/j.wse.2019.06.003

Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction

doi: 10.1016/j.wse.2019.06.003
More Information
  • Corresponding author: Jaan Hui Pu
  • Received Date: 2018-11-23
  • Rev Recd Date: 2019-04-25
  •  In this paper, an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied. In the present vegetated flow modelling, the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer. Within the vegetated layer, an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted. In the non-vegetated layer, a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated. Based on the studied analytical model, a sensitivity analysis has been conducted to assess the influences of the drag () and friction () coefficients on the flow velocity. The investigated ranges of and  have also been compared to published values. The findings suggest that the  and  values are non-constant at different depths and vegetation densities, unlike the constant values commonly suggested in literature. This phenomenon is particularly clear for flows with flexible vegetation, which is characterised by large deflection.

     

  • loading
  • Ben Meftah, M., Mossa, M., 2013. Prediction of channel flow characteristics through square arrays of emergent cylinders.  Physics of Fluids, 25(4), 045102. https://doi.org/10.1063/1.4802047.
    Bootle, W.J., 1971. Forces on an inclined circular cylinder in supercritical flow. AIAA Journal, 9(3), 514–516. https://doi.org/10.2514/3.6213.
    Chen, L., 2010. An integral approach for large deflection cantilever beams. International Journal of Non-Linear Mechanics, 45(3), 301-305. https://doi.org/10.1016/j.ijnonlinmec.2009.12.004.
    Cheng, N., Nguyen, H., 2011. Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. Journal of Hydraulic Engineering, 137(9), 995-1004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000377.  
    Coles, D., 1956. The law of the wake in the turbulent boundary layer. Journal of Fluid Mechanics, 1(2), 191–226. https://doi.org/10.1017/S0022112056000135.
    Dijkstra, J.T., Uittenbogaard, R.E., 2010. Modeling the interaction between flow and highly flexible aquatic vegetation. Water Resources Research, 46(12), W12547. https://doi.org/10.1029/2010WR009246.
    Han, L.J., Zeng, Y.H., Chen, L., Huai, W.X., 2016. Lateral velocity distribution in open channels with partially flexible submerged vegetation. Environmental Fluid Mechanics, 16(6), 1267-1282. https://doi.org/10.1007/s10652-016-9485-9.
    Hu, Y., Huai, W.X., Han, J., 2013. Analytical solution for vertical profile of streamwise velocity in open-channel flow with submerged vegetation. Environmental Fluid Mechanics, 13(4), 389-402. https://doi.org/10.1007/s10652-013-9267-6.
    Huai, W.X., Gao, M., Zeng, Y.H., Li, D., 2009. Two-dimensional analytical solution for compound channel flows with vegetated floodplains. Applied Mathematics and Mechanics, 30(9), 1121-1130. https://doi.org/10.1007/s10483-009-0906-z.
    Huai, W.X., Wang, W.J., Zeng, Y.H., 2013. Two-layer model for open channel flow with submerged flexible vegetation. Journal of Hydraulic Research, 51(6), 708-718. https://doi.org/10.1080/00221686.2013.818585.
    Ishikawa, Y., Mizuhara, K., Ashida, S., 2000. Effect of density of trees on drag exerted on trees in river channels. Journal of Forest Research, 5(4), 271-279. https://doi.org/10.1007/BF02767121. 
    Jarvela, J., 2004. Determination of flow resistance caused by non-submerged woody vegetation. International Journal of River Basin Management, 2(1), 61-70. https://doi.org/10.1080/15715124.2004.9635222.
    Keulegan, G.H., 1938. Laws of turbulent flow in open channels. Journal of Research of the National Bureau of Standards, 21, 707–741
    Kothyari, U., Hayashi, K., Hashimoto, H., 2009. Drag coefficient of unsubmerged rigid vegetation stems in open channel flows. Journal of Hydraulic Research, 47(6), 691-699. https://doi.org/10.3826/jhr.2009.3283.
    Kouwen, N., Fathi-Moghadam, M., 2000. Friction factors for coniferous trees along rivers. Journal of Hydraulic Engineering, 126(10), 732-740. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732).
    Kubrak, E., Kubrak, J., Rowinski, P.M., 2008. Vertical velocity distributions through and above submerged, flexible vegetation. Hydrological Sciences Journal, 53(4), 905-920. https://doi.org/10.1623/hysj.53.4.905.
    Lassabatere, L., Pu, J.H., Bonakdari, H., Joannis, C., Larrarte, F., 2013. Analytical model for streamwise velocity profile in open channels. Journal of Hydraulic Engineering, 139(1), 37-43. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000609.
    Liu, Z.W., Chen, Y.C., Zhu, D.J., Hui, E.Q., Jiang, C.B., 2012. Analytical model for vertical velocity profiles in flows with submerged shrub-like vegetation. Environmental Fluid Mechanics, 12(4), 341-346. https://doi.org/10.1007/s10652-012-9243-6.
    Liu, Z.W., Chen, Y.C., Wu, Y.Y., Wang, W.Y., Li, L., 2017. Simulation of exchange ?ow between open water and ?oating vegetation using a modi?ed RNG k-ε turbulence model. Environmental Fluid Mechanics, 17(2), 355-372. https://doi.org/10.1007/s10652-016-9489-5.
    Nepf, H.M., Vivoni, E.R., 1999. Turbulence structure in depth-limited vegetated flow: Transition between emergent and submerged regimes. In: Proceedings of the 28th International IAHR Conference. IAHR, Graz.
    Nezu, I., Nakagawa, H., 1993. Turbulent Open-channel Flows, IAHR Monograph Series. IAHR, Rotterdam.
    Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, New York. 
    Pu, J.H., 2013. Universal velocity distribution for smooth and rough open channel flows. Journal of Applied Fluid Mechanics, 6(3), 413-423.  
    Pu, J.H., Hussain, K., Shao, S., Huang, Y., 2014a. Shallow sediment transport flow computation using time-varying sediment adaptation length. International Journal of Sediment Research, 29(2), 171-183. https://doi.org/10.1016/S1001-6279(14)60033-0.
    Pu, J.H., Lim, S.Y., 2014. Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment. Environmental Fluid Mechanics, 14(1), 69-86. https://doi.org/10.1007/s10652-013-9286-3.
    Pu, J.H., Shao, S., Huang, Y., 2014b. Numerical and experimental turbulence studies on shallow open channel flows. Journal of Hydro-environment Research, 8(1), 9-19. https://doi.org/10.1016/j.jher.2012.12.001.
    Pu, J.H., 2015. Turbulence modelling of shallow water flows using Kolmogorov approach. Computers and Fluids, 115, 66-74. https://doi.org/10.1016/j.compfluid.2015.03.010.
    Pu, J.H., Wei, J., Huang, Y., 2017. Velocity distribution and 3D turbulence characteristic analysis for flow over water-worked rough bed. Water, 9(9), 668. https://doi.org/10.3390/w9090668.  
    Pu, J.H., Tait, S., Guo, Y., Huang, Y., Hanmaiahgari, P.R., 2018. Dominant features in three-dimensional turbulence structure: Comparison of non-uniform accelerating and decelerating flows. Environmental Fluid Mechanics, 18(2), 395-416. https://doi.org/10.1007/s10652-017-9557-5.
    Tanino, Y., Nepf, H.M., 2008. Lateral dispersion in random cylinder arrays at high Reynolds number. Journal of Fluid Mechanics, 600, 339-371. https://doi.org/10.1017/S0022112008000505.
    Tsujimoto, T., Kitamura, T., 1990. Velocity profile of flow in vegetated-bed channels. In: KHL Progressive Report 1. Kazavava University, pp. 43-55.
    Wu, F.C., Shen, H.W., Chou, Y.J., 1999. Variation of roughness coefficients for unsubmerged and submerged vegetation. Journal of Hydraulic Engineering, 125(9), 934-942. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(934).
    Yang, W., Choi, S.U., 2010. A two-layer approach for depth-limited open-channel flows with submerged vegetation. Journal of Hydraulic Research, 48(4), 466-475. https://doi.org/10.1080/00221686.2010.491649.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (485) PDF downloads(613) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return