Citation: | Yan Xiang, Zhi-min Fu, Ying Meng, Kai Zhang, Zheng-fei Cheng. 2019: Analysis of wave clipping effects of plain reservoir artificial islands based on MIKE21 SW model. Water Science and Engineering, 12(3): 179-187. doi: 10.1016/j.wse.2019.08.002 |
Ayat, B., 2013. Wave power atlas of Eastern Mediterranean and Aegean Seas. Energy 54, 251–262. https://doi.org/10.1016/j.energy.2013.02.060.
|
Bi, F., Song, J., Wu, K., Xu, Y., 2015. Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanol. Sin. 34(9), 43–57. https://doi.org/10.1007/s13131-015-0737-1.
|
Booij, N., Holthuijsen, L.H., Ris, R.C., 1997. The “Swan” wave model for shallow water. In: Proceedings of the 25th International Conference on Coastal Engineering. American Society of Civil Engineers, Orlando, pp. 668–676. https://doi.org/10.1061/9780784402429.053.
|
Bouma, T.J., De Vries, M.B., Low, E., Peralta, G., Tánczos, I.C., Van de Koppel, J., Herman, P.M.J., 2005. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86(8), 2187–2199. https://doi.org/10.1890/04-1588.
|
Bradley, K., Houser, C., 2009. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. J. Geophys. Res. Earth Surf. 114, F01004. https://doi.org/10.1029/2007JF000951.
|
Danish Hydraulic Institute (DHI) Water and Environment, 2017. Mike 21 Spectral Wave Module Scientific Documentation. Hørsholm.
|
Fonseca, R.B., Gonçalves, M., Guedes Soares, C., 2017. Comparing the performance of spectral wave models for coastal areas. J. Coast. Res. 33(2), 331–346. https://doi.org/10.2112/JCOASTRES-D-15-00200.1.
|
Koftis, T., Prinos, P., Stratigaki, V., 2013. Wave damping over artificial Posidonia oceanica meadow: A large-scale experimental study. Coast. Eng. 73, 71–83. https://doi.org/10.1016/j.coastaleng.2012.10.007.
|
Li, J.F.,, Qi, Y.X., Sun, J., 2006. The primary discussion on calculation method of reservoir crest superelevation in the plain area. Journal of Northwest Hydroelectric Power 22(5), 41–43 (in Chinese).
|
Li, Y., Huang, Z., Zhang, J.F., Wu, W.J., Zhang, C.F., Zhao, Q.F., 2014. Application and verification of sea wave forecast by WAVEWATCH III model in the Bohai Sea of China. J. Meteorol. Environ. 30(1), 23–29 (in Chinese). https://doi.org/10.3969 /j.issn.1673-503X.2014.01.004.
|
Noujas, V., Thomas, K.V., Ajeesh, N.R., 2017. Shoreline management plan for a protected but eroding coast along the southwest coast of India. J. Sediment Res. 32, 495–505. https://doi.org/10.1016/j.ijsrc.2017.02.004.
|
Papaioannou, I., Gao, R.P., Rank, E., Wang, C.M., 2013. Stochastic hydroelastic analysis of pontoon-type very large floating structures considering directional wave spectrum. Probabilistic Engineering Mechanics 33, 26–37. https://doi.org/10.1016/j.probengmech.2013.01.006.
|
Suh, K.D., Jung, H.Y., Pyun, C.K., 2007. Wave reflection and transmission by curtainwall-pile breakwaters using circular piles. Ocean Eng. 34(14-15), 2100–2106. https://doi.org/10.1016/j.oceaneng.2007.02.007.
|
Tang, G.Q., Chen, C.Q., Zhao, M., Lu, L., 2015. Numerical simulation of flow past twin near-wall circular cylinders in tandem arrangement at low Reynolds number. Water Sci. Eng. 8(4), 315–325. https://doi.org/10.1016/j.wse.2015.06.002.
|
Wang, C.M., Tay, Z.Y., 2011. Hydroelastic analysis and response of pontoon-type very large floating structures. Lecture Notes in Computational Science and Engineering. 73, 103–130. https://doi.org/10.1007/978-3-642-14206-2_5.
|
Wang, W.Y., He, Q.Q., Yang, J., 2013. Numerical simulation research of wave with a return period of 50 years in the Hangzhou Bay. Journal of Marine Sciences. 31(4), 44–48 (in Chinese).
|
Xiang, Y., Fu, S.Y., Zhu, K., Yuan, H., Fang, Z.Y., 2017. Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm. Water Sci. Eng. 10(1), 70–77. https://doi.org/10.1016/j.wse.2017.03.005.
|
Xie, D.M., Zou, Q.P., Cannon, J.W., 2016. Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm. Water Sci. Eng. 9(1), 33–41. https://doi.org/10.1016/j.wse.2016.02.003.
|
Yang, X.C., Zhang, Q.H., 2013. Joint probability distribution of winds and waves from wave simulation of 20 years (1989–2008) in Bohai Bay. Water Sci. Eng. 6(3), 296–307. https://doi.org/10.3882/j.issn.1674-2370.2013.03.006.
|
Yu, D.Y., Li, L., 2017. Study on wave diffraction of artificial island with different elements. The Ocean Engineering. 35(1), 105-111, 120 (in Chinese). https://doi.org/10.16483/j.issn.1005-9865.2017.01.012.
|
Zheng, D.X., Zhou, R.X., Jin, R.Q., Zheng, L., 2009. Discussion on the calculation method of plain reservoir wave run-up. Yellow River 3, 86–87 (in Chinese).
|
Zhu, D.T., 2013. Full wave solution for hydrodynamic behaviors of pile breakwater. China Ocean Eng. 27(3), 323–334. https://doi.org/10.1007/s13344-013-0028-6.
|
1. | Alturfi, U.A.S.M., Shukur, A.-H.K. Modeling Optimal Locations of Breakwaters to Mitigate Wind-Induced Waves in Bahar Al-Najaf Depression Using MIKE21. International Journal of Safety and Security Engineering, 2024, 14(1): 233-240. doi:10.18280/ijsse.140123 | |
2. | Luu, D.V., Doan, T.N.C., Le Nguyen, K. et al. Simulation of the Hydrodynamic Regime of Aquaculture Development Zones Within Binh Dinh, Vietnam. Environmental Science and Engineering, 2023. doi:10.1007/978-3-031-17808-5_5 | |
3. | Cai, T.-Y., Ye, C., Li, C.-H. et al. Quantitative delimitation of radiant belt toward lake of lake-terrestrial ecotone. Environmental Sciences Europe, 2022, 34(1): 38. doi:10.1186/s12302-022-00615-1 | |
4. | Wang, X., Xiao, X., Qin, Y. et al. Improved maps of surface water bodies, large dams, reservoirs, and lakes in China. Earth System Science Data, 2022, 14(8): 3757-3771. doi:10.5194/essd-14-3757-2022 | |
5. | Landmann, J., Hammer, T.C., Günther, H. et al. Large-scale investigation of wave dampening characteristics of organic, artificial floating islands. Ecological Engineering, 2022. doi:10.1016/j.ecoleng.2022.106691 | |
6. | Wang, F., Zhou, Y. Numerical simulation of typhoon waves in Sanmen Bay. 2022. doi:10.1109/ICGMRS55602.2022.9849329 | |
7. | Gao, Y., Na, X., Li, W. The impact of water supplement on habitat suitability for breeding red-crowned cranes. Ecological Informatics, 2021. doi:10.1016/j.ecoinf.2021.101463 | |
8. | Xue, M.-A., Jiang, Z., Hu, Y.-A. et al. Numerical study of porous material layer effects on mitigating sloshing in a membrane LNG tank. Ocean Engineering, 2020. doi:10.1016/j.oceaneng.2020.108240 | |
9. | Pelikán, P., Hubačíková, V., Kaletová, T. et al. Comparative assessment of different modelling schemes and their applicability to inland small reservoirs: A central europe case study. Sustainability (Switzerland), 2020, 12(24): 1-14. doi:10.3390/su122410692 | |
10. | Henny, C., Jasalesmana, T., Kurniawan, R. et al. The effectiveness of integrated floating treatment wetlands (FTWs) and lake fountain aeration systems (LFAS) in improving the landscape ecology and water quality of a eutrophic lake in Indonesia. IOP Conference Series: Earth and Environmental Science, 2020, 535(1): 012018. doi:10.1088/1755-1315/535/1/012018 | |
11. | Xue, M.-A., Kargbo, O., Zheng, J. Seiche oscillations of layered fluids in a closed rectangular tank with wave damping mechanism. Ocean Engineering, 2020. doi:10.1016/j.oceaneng.2019.106842 | |
12. | Huang, C., Huang, M., Hu, T. et al. Storage-runoff response of cascade reservoirs in mainstream of Lhasa River | [拉萨河干流梯级水库库容-径流响应关系]. Advances in Science and Technology of Water Resources, 2020, 40(1): 64-70. doi:10.3880/j.issn.1006-7647.2020.01.010 |