Volume 12 Issue 3
Sep.  2019
Turn off MathJax
Article Contents
Yan Xiang, Zhi-min Fu, Ying Meng, Kai Zhang, Zheng-fei Cheng. 2019: Analysis of wave clipping effects of plain reservoir artificial islands based on MIKE21 SW model. Water Science and Engineering, 12(3): 179-187. doi: 10.1016/j.wse.2019.08.002
Citation: Yan Xiang, Zhi-min Fu, Ying Meng, Kai Zhang, Zheng-fei Cheng. 2019: Analysis of wave clipping effects of plain reservoir artificial islands based on MIKE21 SW model. Water Science and Engineering, 12(3): 179-187. doi: 10.1016/j.wse.2019.08.002

Analysis of wave clipping effects of plain reservoir artificial islands based on MIKE21 SW model

doi: 10.1016/j.wse.2019.08.002
Funds:  This work was supported by the National Key Research and Development Program of China (Grants No. 2016YFC0401603, 2016YFC0401605, and 2016YFC0401607), and the Central Public-interest Scientific Institution Basal Research Fund (Grants No. Y717012 and Y718007).
More Information
  • Corresponding author: Yan Xiang
  • Received Date: 2019-04-22
  • Rev Recd Date: 2019-07-09
  • Plain reservoirs are shallow, and have low dams and widespread water surfaces. Therefore, wind-wave-induced damage to the dam is one of the important factors affecting the safety of the reservoir. To improve upon unsatisfactory plain reservoir wave-clipping schemes, a numerical method is proposed to predict and analyze waves in the reservoir in the presence of artificial islands, constructed from dredged sediment. The MIKE21 SW model is applied to a specific plain reservoir for finding the optimal artificial island parameters. The simulated wave height attenuation results are seen to agree well with empirically predicted values. Thus, the validity and reliability of the numerical model are established. Artificial islands at suitable locations in the reservoir can attenuate the wave heights by approximately 10% to 30%, which justifies the efficacy of the clipping scheme making use of dredging and island construction.

     

  • loading
  • Ayat, B., 2013. Wave power atlas of Eastern Mediterranean and Aegean Seas. Energy 54, 251–262. https://doi.org/10.1016/j.energy.2013.02.060.
    Bi, F., Song, J., Wu, K., Xu, Y., 2015. Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanol. Sin. 34(9), 43–57. https://doi.org/10.1007/s13131-015-0737-1.
    Booij, N., Holthuijsen, L.H., Ris, R.C., 1997. The “Swan” wave model for shallow water. In: Proceedings of the 25th International Conference on Coastal Engineering. American Society of Civil Engineers, Orlando, pp. 668–676. https://doi.org/10.1061/9780784402429.053.
    Bouma, T.J., De Vries, M.B., Low, E., Peralta, G., Tánczos, I.C., Van de Koppel, J., Herman, P.M.J., 2005. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86(8), 2187–2199. https://doi.org/10.1890/04-1588.
    Bradley, K., Houser, C., 2009. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. J. Geophys. Res. Earth Surf. 114, F01004. https://doi.org/10.1029/2007JF000951.
    Danish Hydraulic Institute (DHI) Water and Environment, 2017. Mike 21 Spectral Wave Module Scientific Documentation. Hørsholm.
    Fonseca, R.B., Gonçalves, M., Guedes Soares, C., 2017. Comparing the performance of spectral wave models for coastal areas. J. Coast. Res. 33(2), 331–346. https://doi.org/10.2112/JCOASTRES-D-15-00200.1.
    Koftis, T., Prinos, P., Stratigaki, V., 2013. Wave damping over artificial Posidonia oceanica meadow: A large-scale experimental study. Coast. Eng. 73, 71–83. https://doi.org/10.1016/j.coastaleng.2012.10.007.
    Li, J.F.,, Qi, Y.X., Sun, J., 2006. The primary discussion on calculation method of reservoir crest superelevation in the plain area. Journal of Northwest Hydroelectric Power 22(5), 41–43 (in Chinese).
    Li, Y., Huang, Z., Zhang, J.F., Wu, W.J., Zhang, C.F., Zhao, Q.F., 2014. Application and verification of sea wave forecast by WAVEWATCH III model in the Bohai Sea of China. J. Meteorol. Environ. 30(1), 23–29 (in Chinese). https://doi.org/10.3969 /j.issn.1673-503X.2014.01.004.
    Noujas, V., Thomas, K.V., Ajeesh, N.R., 2017. Shoreline management plan for a protected but eroding coast along the southwest coast of India. J. Sediment Res. 32, 495–505. https://doi.org/10.1016/j.ijsrc.2017.02.004.
    Papaioannou, I., Gao, R.P., Rank, E., Wang, C.M., 2013. Stochastic hydroelastic analysis of pontoon-type very large floating structures considering directional wave spectrum. Probabilistic Engineering Mechanics 33, 26–37. https://doi.org/10.1016/j.probengmech.2013.01.006.
    Suh, K.D., Jung, H.Y., Pyun, C.K., 2007. Wave reflection and transmission by curtainwall-pile breakwaters using circular piles. Ocean Eng. 34(14-15), 2100–2106. https://doi.org/10.1016/j.oceaneng.2007.02.007.
    Tang, G.Q., Chen, C.Q., Zhao, M., Lu, L., 2015. Numerical simulation of flow past twin near-wall circular cylinders in tandem arrangement at low Reynolds number. Water Sci. Eng. 8(4), 315–325. https://doi.org/10.1016/j.wse.2015.06.002.
    Wang, C.M., Tay, Z.Y., 2011. Hydroelastic analysis and response of pontoon-type very large floating structures. Lecture Notes in Computational Science and Engineering. 73, 103–130. https://doi.org/10.1007/978-3-642-14206-2_5.
    Wang, W.Y., He, Q.Q., Yang, J., 2013. Numerical simulation research of wave with a return period of 50 years in the Hangzhou Bay. Journal of Marine Sciences. 31(4), 44–48 (in Chinese).
    Xiang, Y., Fu, S.Y., Zhu, K., Yuan, H., Fang, Z.Y., 2017. Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm. Water Sci. Eng. 10(1), 70–77. https://doi.org/10.1016/j.wse.2017.03.005.
    Xie, D.M., Zou, Q.P., Cannon, J.W., 2016. Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm. Water Sci. Eng. 9(1), 33–41. https://doi.org/10.1016/j.wse.2016.02.003.
    Yang, X.C., Zhang, Q.H., 2013. Joint probability distribution of winds and waves from wave simulation of 20 years (1989–2008) in Bohai Bay. Water Sci. Eng. 6(3), 296–307. https://doi.org/10.3882/j.issn.1674-2370.2013.03.006.
    Yu, D.Y., Li, L., 2017. Study on wave diffraction of artificial island with different elements. The Ocean Engineering. 35(1), 105-111, 120 (in Chinese). https://doi.org/10.16483/j.issn.1005-9865.2017.01.012.
    Zheng, D.X., Zhou, R.X., Jin, R.Q., Zheng, L., 2009. Discussion on the calculation method of plain reservoir wave run-up. Yellow River 3, 86–87 (in Chinese).
    Zhu, D.T., 2013. Full wave solution for hydrodynamic behaviors of pile breakwater. China Ocean Eng. 27(3), 323–334. https://doi.org/10.1007/s13344-013-0028-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (458) PDF downloads(522) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return