Volume 13 Issue 1
Mar.  2020
Turn off MathJax
Article Contents
Jie Lin, Ji-sheng Zhang, Ke Sun, Xing-lin Wei, Ya-kun Guo. 2020:  Numerical analysis of seabed dynamic response in vicinity of mono-pile under wave-current loading. Water Science and Engineering, 13(1): 74-82. doi: 10.1016/j.wse.2020.02.001
Citation: Jie Lin, Ji-sheng Zhang, Ke Sun, Xing-lin Wei, Ya-kun Guo. 2020:  Numerical analysis of seabed dynamic response in vicinity of mono-pile under wave-current loading. Water Science and Engineering, 13(1): 74-82. doi: 10.1016/j.wse.2020.02.001

 Numerical analysis of seabed dynamic response in vicinity of mono-pile under wave-current loading

doi: 10.1016/j.wse.2020.02.001
Funds:  This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFC1404200), the National Natural Science Foundation of China (Grant No. 51479053), and the Marine Renewable Energy Research Project of the State Oceanic Administration (Grant No. GHME2015GC01).
More Information
  • Corresponding author: Ya-kun Guo
  • Received Date: 2019-05-15
  • Rev Recd Date: 2019-10-31
  •  Pile foundations have been widely used in offshore engineering. In this study, a three-dimensional numerical model was used to investigate the seabed response around a mono-pile under wave-current loading. Reynolds-averaged Navier-Stokes equations were used to simulate the flow field, and Biot’s consolidation equations were used for simulating the response of a porous seabed. The pore water pressure within soil and the effective stress along the depth of the seabed were simulated for various current velocities, with currents traveling either along or against the wave. Results indicate that the current has a significant effect on the effective stress and the pore water pressure distributions, which increases with the current velocity, and that the current traveling against the wave increases the liquefaction depth of the porous seabed.

     

  • loading
  • Bennett, R., 1977. Pore-water pressure measurements: Mississippi delta submarine sediments. Marine Geotechnology 2(1-4), 177−189. https://doi.org/10.1080/10641197709379778.
    Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics 12(2), 155−164. https://doi.org/10.1063/1.1712886.
    Duan, L.L., Liao, C.C., Jeng D.S., Chen, L.Y., 2017. 2D numerical study of wave and current-induced oscillatory non-cohesive soil liquefaction around a partially buried pipeline in a trench. Ocean Engineering 135, 39−51. https://doi.org/10.1016/j.oceaneng.2017.02.036.   
    Duan, L.L., Jeng, D.S., Wang S.H., Zhu, B., 2019. Numerical Investigation of the wave/current-induced responses of transient soil around a square mono-pile foundation. Journal of Coastal Research 35(3), 625−636. https://doi.org/10.2112/JCOASTRES-D-18-00072.1. 
    Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39(1), 201−225. https://doi.org/10.1016/0021-9991(81)90145-5.
    Hsu, H. C., Chen, Y.Y., Hsu, J.R.C., Tseng, W.J., 2009. Nonlinear water waves on uniform current in Lagrangian coordinates. Journal of Nonlinear Mathematical Physics 16(1), 47−61. https://doi.org/10.1142/S1402925109000054.
    Jeng, D.S., Cha, D.H., Lin, Y.S., Hu, P.S., 2001. Wave-induced pore pressure around a composite breakwater. Ocean Engineering 28(10), 1413−1435. https://doi.org/10.1016/S0029-8018(00)00059-7.
    Kriebel, D.L., 1998. Nonlinear wave interaction with a vertical circular cylinder: Wave forces. Ocean Engineering 25(7), 597−605. https://doi.org/10.1016/0029-8018(90)90029-6.
    Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2.
    Lin, Z.B., Pokrajac, D., Guo, Y.K., Jeng, D.S., Tang, T., Rey, N., Zheng, J.H., Zhang, J.S., 2017. Investigation of nonlinear wave-induced seabed response around mono-pile foundation. Coastal Engineering 121, 197−211. https://doi.org/10.1016/j.coastaleng.2017.01.002.
    Liu, B., Jeng, D.S., Ye, G.L., Yang, B., 2015. Laboratory study for pore pressures in sandy deposit under wave loading. Ocean Engineering 106, 207−219. https://doi.org/10.1016/j.oceaneng.2015.06.029.
    Liu, S.X., Li, Y.C., Li, G.W., 2007. Wave current forces on the pile group of base foundation for the East Sea Bridge, China. Journal of Hydrodynamics 19(6), 661−670. https://doi.org/10.1016/S1001-6058(08)60001-3.
    Madsen, O.S., 1978. Wave-induced pore pressures and effective stresses in a porous bed. Géotechnique 28(4), 377–393. https://doi.org/10.1680/geot.1978.28.4.377.
    Maeno, Y., Hasegawa, T., 1985. Evaluation of wave-induced pore pressure in sand layer by wave steepness. Coastal Engineering Journal 28(1), 31−44. https://doi.org/10.1080/05785634.1985.11924403.
    Pu, J.H., Hussain, A., Guo, Y., Vardakastanis, N., Hanmaiahgari, P.R., Lam, D., 2019. Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction. Water Science and Engineering 12(2), 121–128. https://doi.org/10.1016/j.wse.2019.06.003.
    Qi, W.G., Gao, F.P., 2014. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coastal Engineering 83, 72–81. http://dx.doi.org/10.1016/j.coastaleng.2013.10.007.
    Rodi, W., 1993. Turbulence Models and their Application in Hydraulics: State-of-the-Art Review, 3rd ed. Balkema, Rotterdam.  
    Seed, H.B., Idriss, I.M., 1971. A simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations Division 97, 1249-1273.
    Sui, T.T, Zhang, C., Guo, Y.K, Zheng, J.H., Jeng, D.S., Zhang, J.S., Zhang, W., 2016. Three-dimensional numerical model for wave-induced seabed response around mono-pile. Ships and Offshore Structures 11(6), 6672–678. https://doi.org/10.1080/17445302.2015.1051312.
    Sui, T.T., Zheng, J.H., Zhang, C. Jeng, D.S., Zhang, J.S., Guo, Y.K., He, R., 2017. Consolidation of unsaturated seabed around an inserted pile foundation and its effects on the wave-induced momentary liquefaction. Ocean Engineering 131, 308–321. https://doi.org/10.1016/j.oceaneng.2016.10.019.
    Sumer, B.M., 2014. Liquefaction around Marine Structures. World Scientific Publishing Co. Pte. Ltd., Hackensack.
    Tao, W.Y., He, R., Zheng, J.H., 2018.Analysis on horizontal-rocking vibrations of monopile supporting wind turbine. Journal of Hohai University (Natural Sciences) 46(3), 260-267(in Chinese). https://doi.org /10.3876/j.issn.1000-1980.2018.03.011.
    Tsai, C.P., 1995. Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Engineering 22(1), 1–18. https://doi.org/10.1016/0029-8018(94)00042-5.
    Umeyama, M. 2010. Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current. Journal of Waterway, Port, Coastal, and Ocean Engineering 137(2), 85–94. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000067.
    Wei, X.L., 2018. Wave-induced Dynamic Response of Seabed around Steel Pipe Pile. M. E. Dissertation. Hohai University, Nanjing (in Chinese).
    Yamamoto, T., Koning, H.L., Sellmeijer, H., 1978. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics 87(1), 193–206. https://doi.org/10.1017/S0022112078003006.
    Ye, J.H., Jeng, D.S., 2012. Response of porous seabed to natural loadings: Waves and currents. J. Eng. Mech. 138(6), 601–613. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000356.
    Zhang, J.S., Zhang, Y., Zhang, C., Jeng, D.S., 2012. Numerical modeling of seabed response to combined wave-current loading. Journal of Offshore Mechanics and Arctic Engineering 135(3), 75–88. https://doi.org/10.1115/1.4023203.
    Zhang, J.S., Zhang, Y., Jeng, D.S., Liu, P.L.F., Zhang, C., 2014. Numerical simulation of wave-current interaction using a RANS solver. Ocean Engineering 74, 157−164. https://doi.org/10.1016/j.oceaneng.2013.10.014.
    Zhao, H.Y., Jeng, D.S., Liao, C.C., Zhu J.F., 2017. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation. Coastal Engineering 128, 1−21. https://doi.org/10.1016/j.coastaleng.2017.07.002.
    Zhao, Y.F., 2010. Three-dimensional Numerical Simulation of Wave Force on the Offshore Wind Turbine Structure and Scour around Foundation. Tianjin University, Tianjin (in Chinese).
    Zheng, J.H., Zhang, C., Demirbilek, Z., Lin L.H., 2014. Numerical study of sandbar migration under wave-undertow interaction. Journal of Waterway, Port, Coastal, and Ocean Engineering 140(2), 146−159. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000231.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (335) PDF downloads(394) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return