Citation: | Si-long Huang, Yi-ning Chen, Yan Li. 2020: Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species. Water Science and Engineering, 13(1): 34-44. doi: 10.1016/j.wse.2020.03.003 |
Adam, P., 1990. Salt marsh ecology. Cambridge University Press, Cambridge.
|
An, S.Q., Gu, B.H., Zhou, C.F., Wang, Z.S., Deng, Z.F., Zhi, Y.B., Li, H.L., Chen, L., Yu, D.H., Liu, Y.H., 2007. Spartina invasion in China: Implications for invasive species management and future research. Weed Research, 47(3), 183-191. https://doi.org/10.1111/j.1365-3180.2007.00559.x.
|
Callaway, J.C., Josselyn, M.N., 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries, 15(2), 218-226. https://doi.org/10.2307/1352695.
|
Cao, H.B., Ge, Z.M, Zhu, Z.C., Zhang, L.Q., 2014. The expansion pattern of saltmarshes at Chongming Dongtan and its underlying mechanism. Acta Ecologica Sinica, 34(14), 3944-3952 (in Chinese). https://doi.org/10.5846/stxb201304110677.
|
Chapman, V.J., Chadwick, M.J., 1974. Salt marshes and salt deserts of the world. Ecology of Halophytes, 79(13), 3-19.
|
Chen, Y.N., Li, Y., Cai, T.L., Thompson, C., Li, Y., 2016. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surface Processes and Landforms, 41(13), 1967-1979. https://doi.org/10.1002/esp.3964.
|
Chen, Y.N., Li, Y., Thompson, C., Wang, X.K., Cai, T.L., Chang, Y., 2018a. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology, 318, 270-282. https://doi.org/10.1016/j.geomorph.2018.06.018.
|
Chen, Y.N., Cai, T.L., Chang, Y., Wang, S.L., Xia, T., 2018b. Comparison of flow and energy reduction by representative intertidal plants, Southeast China. In: ISOPE Conference Proceedings. International Society of Offshore and Polar Engineers, Sapporo, pp. 1367-1373.
|
Chen, Z.Y., Li, B., Zhong, Y., Chen, J.K., 2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia, 528(1-3), 99-106. https://doi.org/10.1007/s10750-004-1888-9.
|
Chung, C.X., 2006. Forty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 27(1), 49-57. https://doi.org/10.1016/j.ecoleng.2005.09.012.
|
Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., Townend, I., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346, 1-16. https://doi.org/10.1016/j.margeo.2013.08.005.
|
Da Lio, C., D'Alpaos, A., Marani, M., 2013. The secret gardener: Vegetation and the emergence of biogeomorphic patterns in tidal environments. Philosophical Transactions. Series A: Mathematical, Physical, and Engineering Sciences, 371(2004). https://doi.org/10.1098/rsta.2012.0367.
|
Daehler, C.C., Strong, D.R., 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation, 78(1-2), 51–58. https://doi.org/10.1016/0006-3207(96)00017-1.
|
D'Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S., Rinaldo, A., 2005. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research: Earth Surface, 110(F2), F2001. https://doi.org/10.1029/2004JF000182.
|
D'Alpaos, A., 2011. The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology, 126(3-4), 269-278. https://doi.org/10.1016/j.geomorph.2010.04.027.
|
Editorial Board of China Bay Survey, 1991. Survey of China Bays (Vol. 5). China Ocean Press, Beijing (in Chinese).
|
Emery, N.C., Ewanchuk, P.J., Bertness, M.D., 2001. Competition and salt-marsh plant zonation: Stress tolerators may be dominant competitors. Ecology, 82(9), 2471-2485. https://doi.org/10.1890/0012-9658(2001)082
|
[2471:CASMPZ]2.0.CO;2.
|
Gao, S., Du, Y.F., Xie, W.J., Gao, W.H., Wang, D.D., Wu, X.D., 2014. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines. Science China: Earth Sciences, 57(11), 2567–2586. https://doi.org/10.1007/s11430-014-4954-9.
|
Hughes, Z.J., 2012, Tidal Channels on Tidal Flats and Marshes. Springer Netherlands, Dordrecht, pp. 269-300.
|
Li, B., Liao, C.H., Zhang, X.D., Chen, H.L., Wang, Q., Chen, Z.Y., Gan, X.J., Wu, J.H., Zhao, B., Ma, Z.J., et al., 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects. Ecological Engineering, 35(4), 511-520. https://doi.org/10.1016/j.ecoleng.2008.05.013.
|
Li, J.L., Xu, J.Q., Zhang, D.F., Yang, X.P., Tong, Y.Q., Shen, Y.M., 2005. Function of Spartina alterniflora salt marsh and its eco-economic value in south coast of Hangzhou Bay. Areal Research & Development, 24(5), 58-62 (in Chinese). https://doi.org/10.3969/j.issn.1003-2363.2005.05.014.
|
Li, W., 2018. Responses and Thresholds of Typical Salt Marsh Species to Flooding-salinity Stress in Yangtze Estuary. M. E. Dissertation. East China Normal University, Shanghai (in Chinese).
|
Li, X.Z., Ren, L.J., Liu, Y., Craft, C., Mander, U., Yang, S.L., 2014. The impact of the change in vegetation structure on the ecological functions of salt marshes: The example of the Yangtze estuary. Regional Environmental Change, 14(2), 623-632. https://doi.org/10.1007/s10113-013-0520-9.
|
Li, Y., Xie, Q.C., 1993a. Geomorphological evolution law of Andong shoal in Hangzhou Bay. Journal of Marine Sciences, 11(2), 27-35 (in Chinese).
|
Li, Y., Xie, Q.C., 1993b. Sedimentary zoning and sedimentary rate of Andong shoal. Journal of Marine Sciences, 11(1), 23-25 (in Chinese).
|
Marani, M., Lio, C.D., D'Alpaos, A., 2013. Vegetation engineers marsh morphology through multiple competing stable states. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3259-3263. https://doi.org/10.1073/pnas.1218327110.
|
Moffett, K.B., Robinson, D.A., Gorelick, S.M., 2010. Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity, and topography. Ecosystems, 13(8), 1287-1302. https://doi.org/10.1007/s10021-010-9385-7.
|
Moffett, K.B., Gorelick, S.M., Mclaren, R.G., Sudicky, E.A., 2012. Salt marsh ecohydrological zonation due to heterogeneous vegetation-groundwater-surface water interactions. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR010874.
|
Morris, J.T., Haskin, B., 1990. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology, 71(6), 2209-2217. https://doi.org/10.2307/1938633.
|
Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., Cahoon, D.R., 2002. Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869-2877. https://doi.org/10.1890/0012-9658(2002)083
|
[2869:ROCWTR]2.0.CO;2.
|
Murray, A.B., Knaapen, A.F.M., Tal, M., Kirwan, M.L., 2008. Biomorphodynamics: Physical-biological feedbacks that shape landscapes. Water Resources Research, 44(11), W11301. https://doi.org/10.1029/2007WR006410.
|
Ouyang, Z.T., Gao, Y., Xie, X., Guo, H.Q., Zhang, T.T., Zhao, B., 2013. Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PloS One, 8(6), e67315. https://doi.org/10.1371/journal.pone.0067315.
|
Pennings, S.C., Callaway, R.M., 1992. Salt marsh plant zonation: The relative importance of competition and physical factors. Ecology, 73(2), 681-690. https://doi.org/10.2307/1940774.
|
Pennings, S.C., Grant, M., Bertness, M.D., 2005. Plant zonation in low-latitude salt marshes: Disentangling the roles of flooding, salinity and competition. Journal of Ecology, 93(1), 159-167. https://doi.org/10.1111/j.1365-2745.2004.00959.x.
|
Scholten, M., Rozema, J., 1990. The competitive ability of Spartina anglica on Dutch salt marshes. In: Benham, P.E.M., ed., Spartina anglica: A Research Review. Natural Environmental Research Council, London, pp. 39–47.
|
Schwarz, C., Ysebaert, T., Zhu, Z.C., Zhang, L.Q., Bouma, T.J., Herman, P.M.J., 2011. Abiotic factors governing the establishment and expansion of two salt marsh plants in the Yangtze Estuary, China. Wetlands, 31(6), 1011-1021. https://doi.org/10.1007/s13157-011-0212-5.
|
Silvestri, S., Defina, A., Marani, M., 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science, 62(1), 119-130. https://doi.org/10.1016/j.ecss.2004.08.010.
|
Simenstad, C.A., Thom, R.M., 1995. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific northwest estuaries. Hortus Northwest, 6, 9–40.
|
Song, H.B., Yu, H.X., Wang, H.L., Fan, D.D., Hu, B., Wang, F., 2014. Biogenic traces in modern shoal deposits of Andong area, Hangzhou Bay. Journal of Palaeogeography, 16(5), 703-714 (in Chinese). https://doi.org/10.7605/gdlxb.2014.05.56.
|
Sun, S.C., Cai, Y.L., Liu, H., 2001. Biomass allocation of scirpus mariqueter along an elevational gradient in a salt marsh of the Yangtse River Estuary. Acta Botanica Sinica, 43(2), 178-185 (in Chinese).
|
Sun, Z.G., Sun, W.G., Tong, C., Zeng, C.S., Yu, X., Mou, X.J., 2015. China's coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement. Environment International, 79, 25-41. https://doi.org/10.1016/j.envint.2015.02.017.
|
Teal, J.M., Howes, B.L., 2002. Salt marsh values: Retrospection from the end of the century. In: Weinstein, M.P., Kreeger, D.A., eds., Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht, pp. 9-19.
|
Wang, C.H., Lu, M., Yang, B., Yang, Q., Zhang, X.D., Hara, T., Li, B., 2010. Effects of environmental gradients on the performances of four dominant plants in a Chinese saltmarsh: Implications for plant zonation. Ecological Research, 25(2), 347-358. https://doi.org/10.1007/s11284-009-0662-x.
|
Wang, Q., 2007. The Dynamics of Plant Community Distribution of the Salt Marshes in the Yangtze River Estuary as Influenced by Spartina alterniflora Invasions. Ph. D. Dissertation. Fudan University, Shanghai (in Chinese).
|
Wang, Y.P., Gao, S., Jia, J.J., Thompson, C.E.L., Gao, J.H., Yang, Y., 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291-294, 147-161. https://doi.org/10.1016/j.margeo.2011.01.004.
|
Xia, X.M., Yang, H., Li, Y., Li, B.G., Pan, S.M., 2004. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay. Acta Sedimentologica Sinica, 22(1), 130-135 (in Chinese). https://doi.org/10.3969/j.issn.1000-0550.2004.01.020.
|
Xiao, D.R., Zhang, L.Q., Zhu, Z.C., 2010. The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China. Estuarine Coastal and Shelf Science, 88(1), 99-104. https://doi.org/10.1016/j.ecss.2010.03.015.
|
Xie, D.F., Gao, S., Zheng, B., 2013. Numerical modeling of tidal currents, sediment transport and morphological evolution in Hangzhou Bay, China. International Journal of Sediment Research, 28(3), 316-328. https://doi.org/10.1016/S1001-6279(13)60042-6.
|
Yan, Q., Lu, J.J., He, W.S., 2007. Succession character of salt marsh vegetations in Chongming Dongtan wetland. Chinese Journal of Applied Ecology, 18(5), 1097-1101 (in Chinese).
|
Yang, S.L., Chen, J.Y., 1995. Coatal salt marshes and mangrove swamps in China. Chinese Journal of Oceanology and Limnology, 13(4), 318-324. https://doi.org/10.1007/bf02889465.
|
Zhang, R.S., Shen, Y.M., Lu, L.Y., Yan, S.G., Wang, Y.H., Li, J.L., Zhang, Z.L., 2004. Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China. Ecological Engineering, 23(2), 95-105. https://doi.org/10.1016/j.ecoleng.2004.07.007.
|
Zheng, Z.Z., Zhou, Y.X., Tian, B., Ding, X.W., 2016. The spatial relationship between salt marsh vegetation patterns, soil elevation and tidal channels using remote sensing at Chongming Dongtan Nature Reserve, China. Acta Oceanologica Sinica, 35(4), 26-34. https://doi.org/10.1007/s13131-016-0831-z.
|
Zhou, Z., Ye, Q., Coco, G., 2016. A one-dimensional biomorphodynamic model of tidal flats: Sediment sorting, marsh distribution, and carbon accumulation under sea level rise. Advances in Water Resources, 93, 288-302. https://doi.org/10.1016/j.advwatres.2015.10.011.
|