Volume 13 Issue 1
Mar.  2020
Turn off MathJax
Article Contents
Si-long Huang, Yi-ning Chen, Yan Li. 2020: Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species. Water Science and Engineering, 13(1): 34-44. doi: 10.1016/j.wse.2020.03.003
Citation: Si-long Huang, Yi-ning Chen, Yan Li. 2020: Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species. Water Science and Engineering, 13(1): 34-44. doi: 10.1016/j.wse.2020.03.003

Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species

doi: 10.1016/j.wse.2020.03.003
Funds:  This work was supported by the National Nature Science Foundation of China (Grant No. 41776096).
More Information
  • Corresponding author: Yi-ning Chen
  • Received Date: 2019-03-27
  • Rev Recd Date: 2019-09-19
  • A saltmarsh has developed rapidly on the mudflat of Andong Shoal, in southern Hangzhou Bay, over the last decade since embankment. The saltmarsh vegetation changes are driven by both sediment dynamic conditions and the competition between the exotic species Spartina alterniflora (S. alterniflora) and the native species Scirpus mariqueter (S. mariqueter). This study attempted to investigate large-scale spatial variations in the exotic and native species, by analyzing and interpreting a time series (2016 to 2018) of high-resolution (less than 1 m) remote sensing images. The total area of the saltmarsh increased at a rate of 1.07 km2/year, due to the accretion of the whole tidal flat. The spatial patterns revealed a new bimodal pattern for S. alterniflora invasion. S. alterniflora expanded over the upper to middle saltmarsh at a rate of 1.68 km2/year. However, the S. alterniflora patches at the seaward edge expanded at a negative rate of -0.005 km2/year, indicating a different pattern in competition: S. alterniflora had more advantages in the upper saltmarsh, while S. mariqueter had more advantages in the pioneer zone with low elevation. Consequently, S. alterniflora mainly established new habitats by invading S. mariqueter in the middle saltmarsh, but S. mariqueter occupied the bare mudflat for tradeoff. Our results also indicated that the interspecific competition result between S. alterniflora and S. mariqueter depended on elevation, and low elevation might create a favorable environment for S. mariqueter to win the competition with exotic species. This finding could be applied to future invasive species control and saltmarsh management.

     

  • loading
  • Adam, P., 1990. Salt marsh ecology. Cambridge University Press, Cambridge.
    An, S.Q., Gu, B.H., Zhou, C.F., Wang, Z.S., Deng, Z.F., Zhi, Y.B., Li, H.L., Chen, L., Yu, D.H., Liu, Y.H., 2007. Spartina invasion in China: Implications for invasive species management and future research. Weed Research, 47(3), 183-191. https://doi.org/10.1111/j.1365-3180.2007.00559.x.
    Callaway, J.C., Josselyn, M.N., 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries, 15(2), 218-226. https://doi.org/10.2307/1352695.
    Cao, H.B., Ge, Z.M, Zhu, Z.C., Zhang, L.Q., 2014. The expansion pattern of saltmarshes at Chongming Dongtan and its underlying mechanism. Acta Ecologica Sinica, 34(14), 3944-3952 (in Chinese). https://doi.org/10.5846/stxb201304110677.
    Chapman, V.J., Chadwick, M.J., 1974. Salt marshes and salt deserts of the world. Ecology of Halophytes, 79(13), 3-19.
    Chen, Y.N., Li, Y., Cai, T.L., Thompson, C., Li, Y., 2016. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surface Processes and Landforms, 41(13), 1967-1979. https://doi.org/10.1002/esp.3964.
    Chen, Y.N., Li, Y., Thompson, C., Wang, X.K., Cai, T.L., Chang, Y., 2018a. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology, 318, 270-282. https://doi.org/10.1016/j.geomorph.2018.06.018.
    Chen, Y.N., Cai, T.L., Chang, Y., Wang, S.L., Xia, T., 2018b. Comparison of flow and energy reduction by representative intertidal plants, Southeast China. In: ISOPE Conference Proceedings. International Society of Offshore and Polar Engineers, Sapporo, pp. 1367-1373.
    Chen, Z.Y., Li, B., Zhong, Y., Chen, J.K., 2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia, 528(1-3), 99-106. https://doi.org/10.1007/s10750-004-1888-9.
    Chung, C.X., 2006. Forty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 27(1), 49-57. https://doi.org/10.1016/j.ecoleng.2005.09.012.
    Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., Townend, I., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346, 1-16. https://doi.org/10.1016/j.margeo.2013.08.005.
    Da Lio, C., D'Alpaos, A., Marani, M., 2013. The secret gardener: Vegetation and the emergence of biogeomorphic patterns in tidal environments. Philosophical Transactions. Series A: Mathematical, Physical, and Engineering Sciences, 371(2004). https://doi.org/10.1098/rsta.2012.0367.
    Daehler, C.C., Strong, D.R., 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation, 78(1-2), 51–58. https://doi.org/10.1016/0006-3207(96)00017-1.
    D'Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S., Rinaldo, A., 2005. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research: Earth Surface, 110(F2), F2001. https://doi.org/10.1029/2004JF000182.
    D'Alpaos, A., 2011. The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology, 126(3-4), 269-278. https://doi.org/10.1016/j.geomorph.2010.04.027.
    Editorial Board of China Bay Survey, 1991. Survey of China Bays (Vol. 5). China Ocean Press, Beijing (in Chinese).
    Emery, N.C., Ewanchuk, P.J., Bertness, M.D., 2001. Competition and salt-marsh plant zonation: Stress tolerators may be dominant competitors. Ecology, 82(9), 2471-2485. https://doi.org/10.1890/0012-9658(2001)082
    [2471:CASMPZ]2.0.CO;2.
    Gao, S., Du, Y.F., Xie, W.J., Gao, W.H., Wang, D.D., Wu, X.D., 2014. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines. Science China: Earth Sciences, 57(11), 2567–2586. https://doi.org/10.1007/s11430-014-4954-9.
    Hughes, Z.J., 2012, Tidal Channels on Tidal Flats and Marshes. Springer Netherlands, Dordrecht, pp. 269-300.
    Li, B., Liao, C.H., Zhang, X.D., Chen, H.L., Wang, Q., Chen, Z.Y., Gan, X.J., Wu, J.H., Zhao, B., Ma, Z.J., et al., 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects. Ecological Engineering, 35(4), 511-520. https://doi.org/10.1016/j.ecoleng.2008.05.013.
    Li, J.L., Xu, J.Q., Zhang, D.F., Yang, X.P., Tong, Y.Q., Shen, Y.M., 2005. Function of Spartina alterniflora salt marsh and its eco-economic value in south coast of Hangzhou Bay. Areal Research & Development, 24(5), 58-62 (in Chinese). https://doi.org/10.3969/j.issn.1003-2363.2005.05.014.
    Li, W., 2018. Responses and Thresholds of Typical Salt Marsh Species to Flooding-salinity Stress in Yangtze Estuary. M. E. Dissertation. East China Normal University, Shanghai (in Chinese).
    Li, X.Z., Ren, L.J., Liu, Y., Craft, C., Mander, U., Yang, S.L., 2014. The impact of the change in vegetation structure on the ecological functions of salt marshes: The example of the Yangtze estuary. Regional Environmental Change, 14(2), 623-632. https://doi.org/10.1007/s10113-013-0520-9.
    Li, Y., Xie, Q.C., 1993a. Geomorphological evolution law of Andong shoal in Hangzhou Bay. Journal of Marine Sciences, 11(2), 27-35 (in Chinese).
    Li, Y., Xie, Q.C., 1993b. Sedimentary zoning and sedimentary rate of Andong shoal. Journal of Marine Sciences, 11(1), 23-25 (in Chinese).
    Marani, M., Lio, C.D., D'Alpaos, A., 2013. Vegetation engineers marsh morphology through multiple competing stable states. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3259-3263. https://doi.org/10.1073/pnas.1218327110.
    Moffett, K.B., Robinson, D.A., Gorelick, S.M., 2010. Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity, and topography. Ecosystems, 13(8), 1287-1302. https://doi.org/10.1007/s10021-010-9385-7.
    Moffett, K.B., Gorelick, S.M., Mclaren, R.G., Sudicky, E.A., 2012. Salt marsh ecohydrological zonation due to heterogeneous vegetation-groundwater-surface water interactions. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR010874.
    Morris, J.T., Haskin, B., 1990. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology, 71(6), 2209-2217. https://doi.org/10.2307/1938633.
    Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., Cahoon, D.R., 2002. Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869-2877. https://doi.org/10.1890/0012-9658(2002)083
    [2869:ROCWTR]2.0.CO;2.
    Murray, A.B., Knaapen, A.F.M., Tal, M., Kirwan, M.L., 2008. Biomorphodynamics: Physical-biological feedbacks that shape landscapes. Water Resources Research, 44(11), W11301. https://doi.org/10.1029/2007WR006410.
    Ouyang, Z.T., Gao, Y., Xie, X., Guo, H.Q., Zhang, T.T., Zhao, B., 2013. Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PloS One, 8(6), e67315. https://doi.org/10.1371/journal.pone.0067315.
    Pennings, S.C., Callaway, R.M., 1992. Salt marsh plant zonation: The relative importance of competition and physical factors. Ecology, 73(2), 681-690. https://doi.org/10.2307/1940774.
    Pennings, S.C., Grant, M., Bertness, M.D., 2005. Plant zonation in low-latitude salt marshes: Disentangling the roles of flooding, salinity and competition. Journal of Ecology, 93(1), 159-167. https://doi.org/10.1111/j.1365-2745.2004.00959.x.
    Scholten, M., Rozema, J., 1990. The competitive ability of Spartina anglica on Dutch salt marshes. In: Benham, P.E.M., ed., Spartina anglica: A Research Review. Natural Environmental Research Council, London, pp. 39–47.
    Schwarz, C., Ysebaert, T., Zhu, Z.C., Zhang, L.Q., Bouma, T.J., Herman, P.M.J., 2011. Abiotic factors governing the establishment and expansion of two salt marsh plants in the Yangtze Estuary, China. Wetlands, 31(6), 1011-1021. https://doi.org/10.1007/s13157-011-0212-5.
    Silvestri, S., Defina, A., Marani, M., 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science, 62(1), 119-130. https://doi.org/10.1016/j.ecss.2004.08.010.
    Simenstad, C.A., Thom, R.M., 1995. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific northwest estuaries. Hortus Northwest, 6, 9–40.
    Song, H.B., Yu, H.X., Wang, H.L., Fan, D.D., Hu, B., Wang, F., 2014. Biogenic traces in modern shoal deposits of Andong area, Hangzhou Bay. Journal of Palaeogeography, 16(5), 703-714 (in Chinese). https://doi.org/10.7605/gdlxb.2014.05.56.
    Sun, S.C., Cai, Y.L., Liu, H., 2001. Biomass allocation of scirpus mariqueter along an elevational gradient in a salt marsh of the Yangtse River Estuary. Acta Botanica Sinica, 43(2), 178-185 (in Chinese).
    Sun, Z.G., Sun, W.G., Tong, C., Zeng, C.S., Yu, X., Mou, X.J., 2015. China's coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement. Environment International, 79, 25-41. https://doi.org/10.1016/j.envint.2015.02.017.
    Teal, J.M., Howes, B.L., 2002. Salt marsh values: Retrospection from the end of the century. In: Weinstein, M.P., Kreeger, D.A., eds., Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht, pp. 9-19.
    Wang, C.H., Lu, M., Yang, B., Yang, Q., Zhang, X.D., Hara, T., Li, B., 2010. Effects of environmental gradients on the performances of four dominant plants in a Chinese saltmarsh: Implications for plant zonation. Ecological Research, 25(2), 347-358. https://doi.org/10.1007/s11284-009-0662-x.
    Wang, Q., 2007. The Dynamics of Plant Community Distribution of the Salt Marshes in the Yangtze River Estuary as Influenced by Spartina alterniflora Invasions. Ph. D. Dissertation. Fudan University, Shanghai (in Chinese).
    Wang, Y.P., Gao, S., Jia, J.J., Thompson, C.E.L., Gao, J.H., Yang, Y., 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291-294, 147-161. https://doi.org/10.1016/j.margeo.2011.01.004.
    Xia, X.M., Yang, H., Li, Y., Li, B.G., Pan, S.M., 2004. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay. Acta Sedimentologica Sinica, 22(1), 130-135 (in Chinese). https://doi.org/10.3969/j.issn.1000-0550.2004.01.020.
    Xiao, D.R., Zhang, L.Q., Zhu, Z.C., 2010. The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China. Estuarine Coastal and Shelf Science, 88(1), 99-104. https://doi.org/10.1016/j.ecss.2010.03.015.
    Xie, D.F., Gao, S., Zheng, B., 2013. Numerical modeling of tidal currents, sediment transport and morphological evolution in Hangzhou Bay, China. International Journal of Sediment Research, 28(3), 316-328. https://doi.org/10.1016/S1001-6279(13)60042-6.
    Yan, Q., Lu, J.J., He, W.S., 2007. Succession character of salt marsh vegetations in Chongming Dongtan wetland. Chinese Journal of Applied Ecology, 18(5), 1097-1101 (in Chinese).
    Yang, S.L., Chen, J.Y., 1995. Coatal salt marshes and mangrove swamps in China. Chinese Journal of Oceanology and Limnology, 13(4), 318-324. https://doi.org/10.1007/bf02889465.
    Zhang, R.S., Shen, Y.M., Lu, L.Y., Yan, S.G., Wang, Y.H., Li, J.L., Zhang, Z.L., 2004. Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China. Ecological Engineering, 23(2), 95-105. https://doi.org/10.1016/j.ecoleng.2004.07.007.
    Zheng, Z.Z., Zhou, Y.X., Tian, B., Ding, X.W., 2016. The spatial relationship between salt marsh vegetation patterns, soil elevation and tidal channels using remote sensing at Chongming Dongtan Nature Reserve, China. Acta Oceanologica Sinica, 35(4), 26-34. https://doi.org/10.1007/s13131-016-0831-z.
    Zhou, Z., Ye, Q., Coco, G., 2016. A one-dimensional biomorphodynamic model of tidal flats: Sediment sorting, marsh distribution, and carbon accumulation under sea level rise. Advances in Water Resources, 93, 288-302. https://doi.org/10.1016/j.advwatres.2015.10.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (337) PDF downloads(297) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return