Citation: | Zahra Noorisameleh, Shahriar Khaledi, Alireza Shakiba, Parviz Zeaiea, William A. Gough, M. Monirul Qader Mirza. 2020: Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran. Water Science and Engineering, 13(4): 265-274. doi: 10.1016/j.wse.2020.05.001 |
Abbasnia, M., Toros, H., 2016. Future changes in maximum temperature using the statistical downscaling model (SDSM) at selected stations of Iran. Modeling Earth Systems, and Environment 2(68). https://doi.org/10.1007/s40808-016-0112-z.
|
Agricultural Insurance Fund (AIF), 2015. Drought damages 50,000 hectares of Kohgiluyeh and Boyer-Ahmad Province. Islamic Republic News Agency (IRNA), Tehran (in Persian).
|
Alizadeh, A., 2015. Principles of Applied Hydrology, 7th ed. Imam Reza University, Mashhad (in Persian).
|
Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P., 2008. Climate Change and Water. Intergovernmental Panel on Climate Change, Geneva.
|
Bessah, E., Raji, A.O., Taiwo, O.J., Agodzo, S.K., Ololade, O.O., Strapasson, A., 2020. Hydrological responses to climate and land-use changes: The paradox of regional and local climate effect in the Pra River Basin of Ghana. Journal of Hydrology: Regional Studies 27. https://doi.org/10.1016/j.ejrh.2019.100654.
|
Blanco-Gómez, P., Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., 2019. Impact of climate change on water balance components and droughts in the Guajoyo River Basin (El Salvador). Water 11(11). https://doi.org/10.3390/w11112360.
|
Boroghani, M., Moradi, H., Zangane Asadi, M., Pourhashemi, S., 2019. Evaluation of the role of drought in the frequency of dust in Khorasan Razavi Province. Journal of Environmental Science and Technology 21(5), 109–121 (in Persian).
|
Butler, D., Ward, S., Sweetapple, C., Astaraie-Imani, M., Diao, K., Farmani, R., Fu, G., 2016. Reliable, resilient and sustainable water management: The safe & sure approach. Global challenges 1(1), 63–77. https://doi.org/10.1002/gch2.1010.
|
Climatological Research Institute (CRI), 2020. Analysis of Temperature, Precipitation, Drought in the Current Water Year, and Monthly and Seasonal Forecasts (January). National Drought Warning and Monitoring Center, Tehran (in Persian).
|
Cook, B.I., Smerdon, J.E., Seager, R., Coats, S., 2014. Global warming and 21st century drying. Climate Dynamics 43, 2607–2627. https://doi.org/10.1007/s00382-014-2075-y.
|
Guo, Y., Huang, S., Huang, Q., Leng, G., Fang, W., Wang, L., Wang, H., 2020. Propagation thresholds of meteorological drought for triggering hydrological drought at various levels. Science of the Total Environment 712, 136502. https://doi.org/10.1016/j.scitotenv.2020.136502.
|
Heidari, M., Khazaei, M.R., Akhtari, A.A., 2018. Impacts of climate change on climate variables and catchment stream-flow, using the HBV model under BCM2 scenarios. Irrigation and Water Engineering 8(2), 129–139 (in Persian).
|
Hosking, J.R.M., Wallis, J.R., 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3), 339–349. https://doi.org/10.2307/1269343.
|
Hurlimann, A., Wilson, E., 2018. Sustainable urban water management under a changing climate: The role of spatial planning. Water 10(5). https://doi.org/10.3390/w10050546.
|
Intergovernmental Panel on Climate Change (IPCC), 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
|
Intergovernmental Panel on Climate Change (IPCC), 2014. Climate Change 2014: Synthesis Report. IPCC, Geneva.
|
Intergovernmental Panel on Climate Change (IPCC), 2018. Global Warming of 1.5ºC. IPCC, Geneva.
|
Kahil, M.T., Dinar, A., Albiac, J., 2015. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology 522, 95–109. https://doi.org/10.1016/j.jhydrol.2014.12.042.
|
Katko, T.S., Hukka, J.J., 2015. Social and economic importance of water services in the built Environment: Need for more structured thinking. Procedia Economics and Finance 21, 217–223. https://doi.org/10.1016/s2212-5671(15)00170-7.
|
Kendall, M.G., 1975. Rank Correlation Methods, 4th ed. Charles Griffin, London.
|
Ma, M.W., Wang, W.C., Yuan, F., Ren, L.L., Tu, X.J., 2018. Application of a hybrid multiscalar indicator in drought identification in Beijing and Guangzhou, China. Water Science and Engineering, 11(3), 177–186. https://doi.org/10.1016/j.wse.2018.10.003
|
Madani, K., AghaKouchak, A., Mirchi, A., 2016. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iranian Studies 49(6), 997–1016. https://doi.org/10.1080/00210862.2016.1259286.
|
Mafakheri, O., Saligheh, M., Alijani, B., Akbari, M., 2017. Zonation of temporal changes and uniformity of rainfall in Iran. Physical Geography Research Quarterly 49(2), 191–205 (in Persian). https://doi.org/10.22059/jphgr.2017.62841.
|
Mann, H.B., 1945. Non-parametric tests against trend. Econometrica 13(3), 245–259. https://doi.org/10.2307/1907187.
|
McFeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714.
|
Ministry of Energy of Iran (MEI), 2018. Iran Water Statistical Yearbook 2014–2015. Planning Bureau of Water and ABFA, Tehran (in Persian).
|
Mohammed, H., Tveten, A.K., Seidu, R., 2019. Modeling the impact of climate change on flow and E. coli concentration in the catchment of an ungauged drinking water source in Norway. Journal of Hydrology 573, 676–687. https://doi.org/10.1016/j.jhydrol.2019.04.021.
|
Nalbantis, I., Tsakiris, G., 2009. Assessment of hydrological drought revisited. Water Resour. Manage. 23, 881–897. https://doi.org/10.1007/s11269-008-9305-1.
|
Nerantzaki, S.D., Nikolaidis, N.P., 2020. The response of three Mediterranean karst springs to drought and the impact of climate change. Journal of Hydrology 591. https://doi.org/10.1016/j.jhydrol.2020.125296.
|
Noubakht, R., Ghasemi, A., Gholami, M., 2018. Economic-demographic consequences drought in Eastern Iran. Geography (Regional Planning) 8(1), 313-327 (in Persian).
|
Otun, J.A., 2005. Analysis and Quantification of Drought Using Meteorological Indices in the Sudano-Sahel Region of Nigeria. Ph.D. Dissertation. Ahmadu Bello University, Zaria.
|
Palmer, M.A., Reidy Liermann, C.A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P.S., Bond, N., 2008. Climate change and the world's river basins: Anticipating management options. Frontiers in Ecology and the Environment 6(2), 81–89. https://doi.org/10.1890/060148.
|
Pathak, A.A., Dodamani, C.B.M., 2016. Comparison of two hydrological drought indices. Perspectives in Science 8, 626–628. https://doi.org/10.1016/j.pisc.2016.06.039.
|
Pourkarimi, Z., Moghaddasi, M., Mohseni Movahed, A., Delavar, M., 2018. The effects of climate change on the hydrological and agricultural drought characteristics in Zarinehrud Basin using SRI and SSWI indices and SWAT model. Journal of Soil and Water Research 49(5), 1145–1157 (in Persian). https://doi.org/10.22059/IJSWR.2018.246920.667804.
|
Rathnayaka, K., Malano, H., Arora, M., 2016. Assessment of sustainability of urban water supply and demand management options: A comprehensive approach. Water 8(12). https://doi.org/10.3390/w8120595.
|
Shamir, E., Megdal, S.B., Carrillo, C., Castro, C.L., Chang, H.I., Chief, K., Corkhill, F.E., Eden, S., Georgakakos, K., Nelson, K.M., et al., 2015. Climate change and water resources management in the upper Santa Cruz River, Arizona. Journal of Hydrology 521, 18–33. https://doi.org/10.1016/j.jhydrol.2014.11.062.
|
Shrestha, N.K., Du, X., Wang, J., 2017. Assessing climate change impacts on freshwater resources of the Athabasca River Basin, Canada. Science of the Total Environment 601, 425–440. https://doi.org/10.1016/j.scitotenv.2017.05.013.
|
Singh, V., Goyal, M.K., 2016. Analysis and trends of precipitation lapse rate and extreme indices over North Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmospheric Research 167, 34–60. https://doi.org/10.1016/j.atmosres.2015.07.005.
|
Thornthwaite, C.W., 1948. An approach towards a rational classification of climate. Geographical Review 38(1), 55–94. https://doi.org/10.2307/210739.
|
Vicario, L., Díaz, É., García, C.M., Rodríguez, A., 2019. Identification of pluriannual periodicities in series of drought indexes and its relationship with macroclimatic indicators. Environmental and Sustainability Indicators 3-4, 100009. https://doi.org/10.1016/j.indic.2019.100009.
|
Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index-SPEI. Journal of Climate 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.
|
Wang, R., Peng, W., Liu, X., Wu, W., Chen, X., Zhang, S., 2018. Responses of water level in China’s largest freshwater lake to the meteorological drought index (SPEI) in the past five decades. Water 10(2). https://doi.org/10.3390/w10020137.
|
Wang, Y., Yang, X., Zhang, M., Zhang, L., Yu, X., Ren, L., Liu, Y., Jiang, S., Yuan, F., 2019. Projected effects of climate change on future hydrological regimes in the upper Yangtze River Basin, China. Advances in Meteorology. https://doi.org/10.1155/2019/1545746.
|
Wilby, R.L., Dawson, C.W., Barrow, E.M., 2002, SDSM-A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software 17(2), 145–157. https://doi.org/10.1016/S1364-8152(01)00060-3.
|
Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83. https://doi.org/10.2307/3001968.
|
Wilhite, D.A., Sivakumar, M.V.K., Pulwarty, R., 2014. Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes 3, 4–13. https://doi.org/10.1016/j.wace.2014.01.002.
|
World Bank Group, 2016. High and Dry: Climate Change, Water, and the Economy. World Bank, Washington, D.C.
|
Zhao, C., Brissette, F., Chen, J., Martel, J.L., 2020. Frequency change of future extreme summer meteorological and hydrological droughts over North America. Journal of Hydrology 584, 124316. https://doi.org/10.1016/j.jhydrol.2019.124316.
|
Zolfaghari, H., Noorisameleh, Z., 2016. Determination of suitable variables for analysis of droughts in Iran by using the CPEI index. Journal of Spatial Analysis Environmental Hazards 3(3), 99–114 (in Persian). https://doi.org/10.18869/acadpub.jsaeh.3.3.99.
|