Volume 14 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
Fadi Alakhras, Emna Selmane Bel Hadj Hmida, Ioannis Anastopoulos, Zina Trabelsi, Walid Mabrouk, Noureddine Ouerfelli, Jean François Fauvarque. 2021: Diffusion analysis and modeling of kinetic behavior for treatment of brine water using electrodialysis process. Water Science and Engineering, 14(1): 36-45. doi: 10.1016/j.wse.2020.05.002
Citation: Fadi Alakhras, Emna Selmane Bel Hadj Hmida, Ioannis Anastopoulos, Zina Trabelsi, Walid Mabrouk, Noureddine Ouerfelli, Jean François Fauvarque. 2021: Diffusion analysis and modeling of kinetic behavior for treatment of brine water using electrodialysis process. Water Science and Engineering, 14(1): 36-45. doi: 10.1016/j.wse.2020.05.002

Diffusion analysis and modeling of kinetic behavior for treatment of brine water using electrodialysis process

doi: 10.1016/j.wse.2020.05.002
More Information
  • Corresponding author: E-mail address: falakhras@iau.edu.sa (Fadi Alakhras)
  • Received Date: 2019-12-17
  • Accepted Date: 2020-05-18
  • Available Online: 2021-03-17
  • In this study, the removal of monovalent and divalent cations, Na+, K+, Mg2+, and Ca2+, in a diluted solution from Chott-El Jerid Lake, Tunisia, was investigated with the electrodialysis technique. The process was tested using two cation-exchange membranes: sulfonated polyether sulfone cross-linked with 10% hexamethylenediamine (HEXCl) and sulfonated polyether sulfone grafted with octylamine (S-PESOS). The commercially available membrane Nafion® was used for comparison. The results showed that Nafion® and S-PESOS membranes had similar removal behaviors, and the investigated cations were ranked in the following descending order in terms of their demineralization rates: Na+ > Ca2+ > Mg2+ > K+. Divalent cations were more effectively removed by HEXCl than by monovalent cations. The plots based on the Weber–Morris model showed a strong linearity. This reveals that intra-particle diffusion was not the removal rate-determining step, and the removal process was controlled by two or more concurrent mechanisms. The Boyd plots did not pass through their origin, and the sole controlling step was determined by film-diffusion resistance, especially after a long period of electrodialysis. Additionally, a semi-empirical model was established to simulate the temporal variation of the treatment process, and the physical significance and values of model parameters were compared for the three membranes. The findings of this study indicate that HEXCl and S-PESOS membranes can be efficiently utilized for water softening, especially when effluents are highly loaded with calcium and magnesium ions.

     

  • loading
  • Agel, E., Bouet, J., Fauvarque, J.F., 2001. Characterization and use of anionic membranes for alkaline fuel cells. J. Power Sources 101(2), 267-274. https://doi.org/10.1016/S0378-7753(01)00759-5.
    Aji, M.P., Wiguna, P.A., Karunawan, J., Wati, A.L., Sulhadi, 2017. Removal of heavy metal nickel-ions from wastewaters using carbon nanodots from frying oil. Procedia Eng. 170, 36-40. https://doi.org/10.1016/j.proeng.2017.03.007.
    Banasiak, L.J., Schäfer, A.I., 2009. Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J. Membr. Sci. 334(1-2), 101-109. https://doi.org/10.1016/j.memsci.2009.02.020.
    Bel Hadj Hmida, E.S., Ouejhani, A., Lalléve, G., Fauvarque, J.F., Dachraoui, M., 2010. A novel anionic electrodialysis membrane can be used to remove nitrate and nitrite from wastewater. Desalin. Water Treat. 23(1-3), 13-19. https://doi.org/10.5004/dwt.2010.1408.
    Bessière, C., Dammak, L., Larchet, C., Auclair, B., 1999. Détermination du coefficient d'affinité d'une membrane échangeuse de cations. Eur. Polym. J. 35(5), 899-907 (in French). https://doi.org/10.1016/S0014-3057(98)00058-5.
    Caprarescu, S., Corobea, M.C., Purcar, V., Spataru, C.I., Ianchis, R., Vasilievici, G., Vuluga, Z., 2015. San copolymer membranes with ion exchangers for Cu(Ⅱ) removal from synthetic wastewater by electrodialysis. J. Environ. Sci., 35, 27-37. https://doi.org/10.1016/j.jes.2015.02.005.
    Caprarescu, S., Ianchis, R., Radu, A. -L., Sarbu, A., Somoghi, R., Trica, B., Alexandrescu, E., Spataru, C. -I., Fierascu, R.C., Ion-Ebrasu, D., et al., 2017. Synthesis, characterization and efficiency of new organically modified montmorillonite polyethersulfone membranes for removal of zinc ions from wastewasters. Appl. Clay Sci. 137, 135-142. https://doi.org/10.1016/j.clay.2016.12.013
    Caprarescu, S., Miron, A. R., Purcar, V., Radu, A. -L., Sarbu, A., Nicolae, C.A., Neagu Pascu, M., Ion-Ebrasu, D., Raditoiu, V., 2018. Treatment of crystal violet from synthetic solution using membranes doped with natural fruit extract. J. CLEAN - Soil, Air, Water 46, (7), 1700413. https://doi.org/10.1002/clen.201700413.
    Chaabouni, A., Guesmi, F., Louati, I., Hannachi, C., Hamrouni, B., 2015. Temperature effect on ion exchange equilibrium between CMX membrane and electrolytes solutions. J. Water Reuse Desal. 5(4), 535-554. https://doi.org/10.2166/wrd.2015.008.
    Ghassami, H., McGrath, J.E., Zawodzinski Jr., T.A., 2006. Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell. Polymer. 47(11), 4132-4139. https://doi.org/10.1016/j.polymer.2006.02.038.
    Gottesfeld, S., Zawodzinski, T.A., 1997. Polymer electrolyte fuel cells. In: Alkire, R.C., Gerischer, H., Kolb, D.M., Tobias, C.W., eds., Advances in Electrochemical Science and Engineering, Volume 5. Wiley-VCH Verlag GmbH, pp. 195-301. https://doi.org/10.1002/9783527616794.ch4.
    Grzegorzek, M., Majewska-Nowak, K., 2017. The influence of organic matter on fluoride removal efficiency during the electrodialysis process. Desalin. Water Treat. 69, 153-162. https://doi.org/10.5004/dwt.2017.20327.
    Iojoiu, C., Genova-Dimitrova, P., Marechal, M., Sanchez, J-Y., 2006. Chemical and physicochemical characterizations of ionomers. Electrochim. Acta 51(23), 4789-4801. https://doi.org/10.1016/j.electacta.2006.01.022.
    Jutemar, E.P., Jannasch, P., 2010. Locating sulfonic acid groups on various side chains to poly(arylene ether sulfone)s: Effects on the ionic clustering and properties of proton-exchange membranes. J. Membr. Sci. 351(1-2), 87-95. https://doi.org/10.1016/j.memsci.2010.01.036.
    Koryta, J., Dvorak, J., Karan, L., 1993. Experimental Studies on Polymer Electrolyte, Principles of Electrochemistry. 2nd edition, John Wiley & Sons.
    Lima, E.C., Adebayo, M.A., Machado, F.M., 2015. Kinetic and equilibrium models of adsorption in carbon nanomaterials as adsorbents for environmental and biological applications. In: Bergmann, C.P., Machado, F.M. eds., Carbon Nanostructures. Springer, pp. 33-69.
    Mabrouk, W., Ogier, L., Matoussi, F., Sollogoub, C., Vidal, S., Dachraoui, M., Fauvarque, J.F., 2011. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS). Mat. Chem. Phys. 128(3), 456-463. https://doi.org/10.1016/j.matchemphys.2011.03.031.
    Mabrouk, W., Ogier, L., Vidal, S., Sollogoub, C., Matoussi, F., Dachraoui, M., Fauvarque, J.F., 2012. Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications. Fuel Cells 12, 179-187. https://doi.org/10.1002/fuce.201100051.
    Maining, M. J., Melshelmer, S., 1983. Binary and ternary ion-exchange equilibriums with a perfluorosulfonic acid membrane. Ind. Eng. Chem. Fundam. 22, 311-317. doi: 10.1021/i100011a008
    Matsumoto, K., Higashihara, T., Ueda, M., 2009. Locally and densely sulfonated poly(ether sulfone) as proton exchange membrane. Macromolecules 42(4), 1161-1166. https://doi.org/10.1021/ma802637w.
    Mauritz, K.A., Moore, R.B., 2004. State of Understanding of Nafion. Chem. Rev. 104(10), 4535-4585. https://doi.org/10.1021/cr0207123.
    McKay, G., 1983. The adsorption of dyestuffs from aqueous solutions using activated carbon, Ⅲ: Intraparticle diffusion processes. J. Chem. Technol. Biotechnol. 33(4), 196-204. https://doi.org/10.1002/jctb.504330406.
    Patel, S.K., Qin, M., Shane Walker, W., Elimelech, M., 2020. Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization. Environ. Sci. Technol. 54(6), 3663-3677. https://doi.org/10.1021/acs.est.9b07482.
    Robinson, R., Stokes, R.H., Marsh, K.N., 1970. Activity coefficients in the ternary system: Water + sucrose + sodium chloride. J. Chem. Thermodyn. 2(5), 745-750. https://doi.org/10.1016/0021-9614(70)90050-9.
    Sahu, A.K., Ketpang, K., Shanmugam, S., Kwon, O., Lee, S., Kim, H., 2016. Sulfonated graphene-nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity. J. Phys. Chem. C. 120(29), 15855-15866. https://doi.org/10.1021/acs.jpcc.5b11674.
    Shee, F.L.T., Arul, J., Brunet, S., Bazinet, L., 2008. Performing a three-step process for conversion of chitosan to its oligomers using a unique bipolar membrane electrodialysis system. J. Agr. Food Chem. 56(21), 10019-10026. https://doi.org/10.1021/jf801557v.
    Shee, F.L.T., Bazinet, L., 2009. Cationic balance and current efficiency of a three-compartment bipolar membrane electrodialysis system during the preparation of chitosan oligomers. J. Membr. Sci. 341(1-2), 46-50. https://doi.org/10.1016/j.memsci.2009.05.028.
    Springer, T.E., Zawodzinski, T.A., Gottesfeld, S., 1991. Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138, 2334-2342. https://iopscience.iop.org/article/10.1149/1.2085971. doi: 10.1149/1.2085971
    Strathmann, H., 2004. Ion-exchange Membrane Separation Processes, Elsevier, Amsterdam.
    Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M., Bauer, J., 2006. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51(1), 40-47. https://doi.org/10.1016/j.seppur.2005.12.020.
    Tzanetakis, N., Taama, W.M., Scott, K., Jachuck, R.J.J., Slade, R.S., Varcoe, J., 2003. Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt. Sep. Purif. Technol. 30(2), 113-127. https://doi.org/10.1016/S1383-5866(02)00139-9.
    Valderrama, C., Gamisans, X., de las Heras, X., Farran, A., Cortina, J.L., 2008. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: Intraparticle diffusion coefficients. J. Hazard. Mater. 157(2-3), 386-396. https://doi.org/10.1016/j.jhazmat.2007.12.119.
    Vassal, N., Salmon, F., Fauvarque, J.F., 1999. Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte. J. Electrochem. Soc. 146(1), 20-26. https://iopscience.iop.org/article/10.1149/1.1391558. doi: 10.1149/1.1391558
    Viegas, R.M.C., Campinas, M., Costa, H., Rosa, M.J., 2014. How do the HSDM and Boyd's model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption. 20, 737-746. https://doi.org/10.1007/s10450-014-9617-9.
    Yang, Y.S., Shi, Z.Q., Holdcroft, S., 2004. Synthesis of poly[arylene ether sulfone-b-vinylidene fluoride] block copolymers. Eur. Polym. J. 40(3), 531-541. https://doi.org/10.1016/j.eurpolymj.2003.10.015.
    Yee, R.S.L., Rozendal, R.A., Zhang, K., Ladewig, B.P., 2012. Cost effective cation exchange membranes: A review. Chem. Eng. Res. Design. 90(7), 950-959. https://doi.org/10.1016/j.cherd.2011.10.015.
    Zhao, Y., Yin, J., 2010. Synthesis and properties of poly(ether ether ketone)-block-sulfonated polybutadiene copolymers for PEM applications. Eur. Polym. J. 46(3), 592-601. https://doi.org/10.1016/j.eurpolymj.2009.11.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (207) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return