Citation: | Fadi Alakhras, Emna Selmane Bel Hadj Hmida, Ioannis Anastopoulos, Zina Trabelsi, Walid Mabrouk, Noureddine Ouerfelli, Jean François Fauvarque. 2021: Diffusion analysis and modeling of kinetic behavior for treatment of brine water using electrodialysis process. Water Science and Engineering, 14(1): 36-45. doi: 10.1016/j.wse.2020.05.002 |
Agel, E., Bouet, J., Fauvarque, J.F., 2001. Characterization and use of anionic membranes for alkaline fuel cells. J. Power Sources 101(2), 267-274. https://doi.org/10.1016/S0378-7753(01)00759-5.
|
Aji, M.P., Wiguna, P.A., Karunawan, J., Wati, A.L., Sulhadi, 2017. Removal of heavy metal nickel-ions from wastewaters using carbon nanodots from frying oil. Procedia Eng. 170, 36-40. https://doi.org/10.1016/j.proeng.2017.03.007.
|
Banasiak, L.J., Schäfer, A.I., 2009. Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J. Membr. Sci. 334(1-2), 101-109. https://doi.org/10.1016/j.memsci.2009.02.020.
|
Bel Hadj Hmida, E.S., Ouejhani, A., Lalléve, G., Fauvarque, J.F., Dachraoui, M., 2010. A novel anionic electrodialysis membrane can be used to remove nitrate and nitrite from wastewater. Desalin. Water Treat. 23(1-3), 13-19. https://doi.org/10.5004/dwt.2010.1408.
|
Bessière, C., Dammak, L., Larchet, C., Auclair, B., 1999. Détermination du coefficient d'affinité d'une membrane échangeuse de cations. Eur. Polym. J. 35(5), 899-907 (in French). https://doi.org/10.1016/S0014-3057(98)00058-5.
|
Caprarescu, S., Corobea, M.C., Purcar, V., Spataru, C.I., Ianchis, R., Vasilievici, G., Vuluga, Z., 2015. San copolymer membranes with ion exchangers for Cu(Ⅱ) removal from synthetic wastewater by electrodialysis. J. Environ. Sci., 35, 27-37. https://doi.org/10.1016/j.jes.2015.02.005.
|
Caprarescu, S., Ianchis, R., Radu, A. -L., Sarbu, A., Somoghi, R., Trica, B., Alexandrescu, E., Spataru, C. -I., Fierascu, R.C., Ion-Ebrasu, D., et al., 2017. Synthesis, characterization and efficiency of new organically modified montmorillonite polyethersulfone membranes for removal of zinc ions from wastewasters. Appl. Clay Sci. 137, 135-142. https://doi.org/10.1016/j.clay.2016.12.013
|
Caprarescu, S., Miron, A. R., Purcar, V., Radu, A. -L., Sarbu, A., Nicolae, C.A., Neagu Pascu, M., Ion-Ebrasu, D., Raditoiu, V., 2018. Treatment of crystal violet from synthetic solution using membranes doped with natural fruit extract. J. CLEAN - Soil, Air, Water 46, (7), 1700413. https://doi.org/10.1002/clen.201700413.
|
Chaabouni, A., Guesmi, F., Louati, I., Hannachi, C., Hamrouni, B., 2015. Temperature effect on ion exchange equilibrium between CMX membrane and electrolytes solutions. J. Water Reuse Desal. 5(4), 535-554. https://doi.org/10.2166/wrd.2015.008.
|
Ghassami, H., McGrath, J.E., Zawodzinski Jr., T.A., 2006. Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell. Polymer. 47(11), 4132-4139. https://doi.org/10.1016/j.polymer.2006.02.038.
|
Gottesfeld, S., Zawodzinski, T.A., 1997. Polymer electrolyte fuel cells. In: Alkire, R.C., Gerischer, H., Kolb, D.M., Tobias, C.W., eds., Advances in Electrochemical Science and Engineering, Volume 5. Wiley-VCH Verlag GmbH, pp. 195-301. https://doi.org/10.1002/9783527616794.ch4.
|
Grzegorzek, M., Majewska-Nowak, K., 2017. The influence of organic matter on fluoride removal efficiency during the electrodialysis process. Desalin. Water Treat. 69, 153-162. https://doi.org/10.5004/dwt.2017.20327.
|
Iojoiu, C., Genova-Dimitrova, P., Marechal, M., Sanchez, J-Y., 2006. Chemical and physicochemical characterizations of ionomers. Electrochim. Acta 51(23), 4789-4801. https://doi.org/10.1016/j.electacta.2006.01.022.
|
Jutemar, E.P., Jannasch, P., 2010. Locating sulfonic acid groups on various side chains to poly(arylene ether sulfone)s: Effects on the ionic clustering and properties of proton-exchange membranes. J. Membr. Sci. 351(1-2), 87-95. https://doi.org/10.1016/j.memsci.2010.01.036.
|
Koryta, J., Dvorak, J., Karan, L., 1993. Experimental Studies on Polymer Electrolyte, Principles of Electrochemistry. 2nd edition, John Wiley & Sons.
|
Lima, E.C., Adebayo, M.A., Machado, F.M., 2015. Kinetic and equilibrium models of adsorption in carbon nanomaterials as adsorbents for environmental and biological applications. In: Bergmann, C.P., Machado, F.M. eds., Carbon Nanostructures. Springer, pp. 33-69.
|
Mabrouk, W., Ogier, L., Matoussi, F., Sollogoub, C., Vidal, S., Dachraoui, M., Fauvarque, J.F., 2011. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS). Mat. Chem. Phys. 128(3), 456-463. https://doi.org/10.1016/j.matchemphys.2011.03.031.
|
Mabrouk, W., Ogier, L., Vidal, S., Sollogoub, C., Matoussi, F., Dachraoui, M., Fauvarque, J.F., 2012. Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications. Fuel Cells 12, 179-187. https://doi.org/10.1002/fuce.201100051.
|
Maining, M. J., Melshelmer, S., 1983. Binary and ternary ion-exchange equilibriums with a perfluorosulfonic acid membrane. Ind. Eng. Chem. Fundam. 22, 311-317. doi: 10.1021/i100011a008
|
Matsumoto, K., Higashihara, T., Ueda, M., 2009. Locally and densely sulfonated poly(ether sulfone) as proton exchange membrane. Macromolecules 42(4), 1161-1166. https://doi.org/10.1021/ma802637w.
|
Mauritz, K.A., Moore, R.B., 2004. State of Understanding of Nafion. Chem. Rev. 104(10), 4535-4585. https://doi.org/10.1021/cr0207123.
|
McKay, G., 1983. The adsorption of dyestuffs from aqueous solutions using activated carbon, Ⅲ: Intraparticle diffusion processes. J. Chem. Technol. Biotechnol. 33(4), 196-204. https://doi.org/10.1002/jctb.504330406.
|
Patel, S.K., Qin, M., Shane Walker, W., Elimelech, M., 2020. Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization. Environ. Sci. Technol. 54(6), 3663-3677. https://doi.org/10.1021/acs.est.9b07482.
|
Robinson, R., Stokes, R.H., Marsh, K.N., 1970. Activity coefficients in the ternary system: Water + sucrose + sodium chloride. J. Chem. Thermodyn. 2(5), 745-750. https://doi.org/10.1016/0021-9614(70)90050-9.
|
Sahu, A.K., Ketpang, K., Shanmugam, S., Kwon, O., Lee, S., Kim, H., 2016. Sulfonated graphene-nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity. J. Phys. Chem. C. 120(29), 15855-15866. https://doi.org/10.1021/acs.jpcc.5b11674.
|
Shee, F.L.T., Arul, J., Brunet, S., Bazinet, L., 2008. Performing a three-step process for conversion of chitosan to its oligomers using a unique bipolar membrane electrodialysis system. J. Agr. Food Chem. 56(21), 10019-10026. https://doi.org/10.1021/jf801557v.
|
Shee, F.L.T., Bazinet, L., 2009. Cationic balance and current efficiency of a three-compartment bipolar membrane electrodialysis system during the preparation of chitosan oligomers. J. Membr. Sci. 341(1-2), 46-50. https://doi.org/10.1016/j.memsci.2009.05.028.
|
Springer, T.E., Zawodzinski, T.A., Gottesfeld, S., 1991. Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138, 2334-2342. https://iopscience.iop.org/article/10.1149/1.2085971. doi: 10.1149/1.2085971
|
Strathmann, H., 2004. Ion-exchange Membrane Separation Processes, Elsevier, Amsterdam.
|
Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M., Bauer, J., 2006. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51(1), 40-47. https://doi.org/10.1016/j.seppur.2005.12.020.
|
Tzanetakis, N., Taama, W.M., Scott, K., Jachuck, R.J.J., Slade, R.S., Varcoe, J., 2003. Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt. Sep. Purif. Technol. 30(2), 113-127. https://doi.org/10.1016/S1383-5866(02)00139-9.
|
Valderrama, C., Gamisans, X., de las Heras, X., Farran, A., Cortina, J.L., 2008. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: Intraparticle diffusion coefficients. J. Hazard. Mater. 157(2-3), 386-396. https://doi.org/10.1016/j.jhazmat.2007.12.119.
|
Vassal, N., Salmon, F., Fauvarque, J.F., 1999. Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte. J. Electrochem. Soc. 146(1), 20-26. https://iopscience.iop.org/article/10.1149/1.1391558. doi: 10.1149/1.1391558
|
Viegas, R.M.C., Campinas, M., Costa, H., Rosa, M.J., 2014. How do the HSDM and Boyd's model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption. 20, 737-746. https://doi.org/10.1007/s10450-014-9617-9.
|
Yang, Y.S., Shi, Z.Q., Holdcroft, S., 2004. Synthesis of poly[arylene ether sulfone-b-vinylidene fluoride] block copolymers. Eur. Polym. J. 40(3), 531-541. https://doi.org/10.1016/j.eurpolymj.2003.10.015.
|
Yee, R.S.L., Rozendal, R.A., Zhang, K., Ladewig, B.P., 2012. Cost effective cation exchange membranes: A review. Chem. Eng. Res. Design. 90(7), 950-959. https://doi.org/10.1016/j.cherd.2011.10.015.
|
Zhao, Y., Yin, J., 2010. Synthesis and properties of poly(ether ether ketone)-block-sulfonated polybutadiene copolymers for PEM applications. Eur. Polym. J. 46(3), 592-601. https://doi.org/10.1016/j.eurpolymj.2009.11.007.
|