Citation: | Bo-wen Shi, Ming-chao Li, Ling-guang Song, Meng-xi Zhang, Yang Shen. 2020: Deformation coordination analysis of CC-RCC combined dam structures under dynamic loads. Water Science and Engineering, 13(2): 162-170. doi: 10.1016/j.wse.2020.07.001 |
Calayir, Y., Dumano?lu, A.A., 1993. Static and dynamic analysis of fluid and fluid-structure systems by the Lagrangian method. Computers & structures 49(4), 625-632. https://doi.org/10.1016/0045-7949(93)90067-N.
|
Cervera, M., Oliver, J., Prato, T., 2000. Simulation of construction of RCC dams, I: Temperature and aging. Journal of Structural Engineering 126(9), 1053-1061. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1053).
|
Chen, S.S., Fu, Z.Z., Wei, K.M., Han, H.Q., 2016. Seismic responses of high concrete face rockfill dams: A case study. Water Science and Engineering 9(3), 195-204. https:// doi.org/ 10.1016/j.wse.2016.09.002.
|
Chopra, A.K., Chakrabarti, P., 1972. The earthquake experience at Koyna Dam and stresses in concrete gravity dams. Earthquake Engineering & Structural Dynamics 1(2), 151-164. https://doi.org/10.1002/eqe.4290010204.
|
Dou, S.Q., Li, J.J., Kang, F., 2019. Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model. Water Science and Engineering 12(3), 188-195. https://doi.org/10.1016/j.wse.2019.09.002.
|
He, J.P., Jiang, Z.X., Zhao, C., Peng, Z.Q., Shi, Y.Q., 2018. Cloud-Verhulst hybrid prediction model for dam deformation under uncertain conditions. Water Science and Engineering 11(1), 61-67. https://doi.org/10.1016/j.wse.2018.03.002.
|
Jin, A.Y., Pan, J.W., Wang, J.T., Zhang, C., 2019. Effect of foundation models on seismic response of arch dams. Engineering Structures 188, 578-590. https://doi.org/10.1016/j.engstruct.2019.03.048.
|
Lee, J., Fenves, G.L., 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
|
Li, C.X., Campbell, B.K., Liu, Y.M., Yue, D.K.P., 2019. A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments. Journal of Computational Physics 392, 694-712. https://doi.org/10.1016/j.jcp.2019.04.068.
|
Li, M.C., Guo, X.Y., Shi. J., Zhu, Z.B., 2015. Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam. Water Science and Engineering 8(4), 326-334. https://doi.org/10.1016/j.wse.2015.10.001.
|
Li, M.C., Zhang, M.X., Wang, Z.Y., 2017. Optimization of the crack control structure with induced joint of RCC gravity dam. Journal of Hydroelectric Engineering 48(5), 551-559 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.20161103.
|
Li, M.C., Shen, Y., Zhang, M.X., Xu, N., 2018. Deformation coordination analysis of RCC gravity dams with functionally graded structures. Journal of Hydroelectric Engineering 37(8), 94-102 (in Chinese). https://doi.org/10.11660/slfdxb.20180810.
|
Liu, S.H., Wang, L.J., Wang, Z.J., Bauer, E., 2016. Numerical stress-deformation analysis of a cut-off wall in clay-core rockfill dam on thick overburden. Water Science and Engineering 9(3), 219-226. https://doi.org/10.1016/j.wse.2016.11.002.
|
Lubliner, J., Oliver, J., Oller, S., Oñate, E., 1989. A plastic-damage model for concrete. International Journal of Solids and Structures 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
|
Luo, D.N., Hu, Y., Li, Q.B., 2016. An interfacial layer element for finite element analysis of arch dams. Engineering Structures 128, 400-414. https://doi.org/10.1016/j.engstruct.2016.09.048.
|
Mridha, S., Maity, D., 2014. Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system. Engineering Structures 80, 289-297. https://doi.org/10.1016/j.engstruct.2014.09.017.
|
Neumann, F., 1941. The analysis of the El Centro record of the Imperial Valley earthquake of May 18, 1940. Seismological Research Letters 13(1-2), 400. https://doi.org/10.1785/gssrl.13.1-2.400.
|
Oudni, N., Bouafia, Y., 2015. Response of concrete gravity dam by damage model under seismic excitation. Engineering Failure Analysis 58, 417-428. https://doi.org/10.1016/j.engfailanal.2015.08.020.
|
Wang, G.H., Wang, Y.X., Lu, W.B., Yu, M., Wang, C., 2017. Deterministic 3D seismic damage analysis of Guandi concrete gravity dam: A case study. Engineering Structures 148, 263-276. https://doi.org/10.1016/j.engstruct.2017.06.060.
|
Wang, J.T., Jin, A.Y., Du, X.L., Wu, M.X., 2016. Scatter of dynamic response and damage of an arch dam subjected to artificial earthquake accelerograms. Soil Dynamics and Earthquake Engineering 87, 93-100. https://doi.org/10.1016/j.soildyn.2016.05.003.
|
Wang, J.T., Zhang, M.X., Jin, A.Y., Zhang, C.H., 2018a. Seismic fragility of arch dams based on damage analysis. Soil Dynamics and Earthquake Engineering 109, 58-68. https://doi.org/10.1016/j.soildyn.2018.01.018.
|
Wang, J.T., Jin, F., Zhang, C.H., 2019. Nonlinear seismic response analysis of high arch dams to spatially-varying ground motions. International Journal of Civil Engineering 17(4), 487-493. https://doi.org/10.1007/s40999-018-0310-3.
|
Wang, R.K., Chen, L., Zhang, C., 2018b. Seismic design of Xiluodu ultra-high arch dam. Water Science and Engineering 11(4), 288-301. https://doi.org/10.1016/j.wse.2016.09.001.
|
Wilson, E.L., Khalvati, M., 1983. Finite elements for the dynamic analysis of fluid-solid systems. International Journal for Numerical Methods in Engineering 19(11), 1657-1668. https://doi.org/10.1002/nme.1620191105.
|
Wu, S.Y., Cao, W., Zheng, J., 2016. Analysis of working behavior of Jinping-I Arch Dam during initial impoundment. Water Science and Engineering 9(3), 240-248. https://doi.org/10.1016/j.wse.2016.11.001.
|
Xu, Z., 2015. Research on the Damming by Normal Concrete with High Fly Ash and Roller Compacted Concrete. M.E. Dissertation. Tsinghua University, Beijing (in Chinese).
|
Yang, J., Jin, F., Wang, J.T., Kou, L.H., 2017. System identification and modal analysis of an arch dam based on earthquake response records. Soil Dynamics and Earthquake Engineering 92, 109-121. https://doi.org/10.1016/j.soildyn.2016.09.039.
|
Yang, J., Qu, X.D., Chang, M., 2019. An intelligent singular value diagnostic method for concrete dam deformation monitoring. Water Science and Engineering 12(3), 205-212. https://doi.org/10.1016/j.wse.2019.09.006.
|
Zhang, L., Li, B., Peng, S., Tian, D.J., Yang, J., 2019a. Research on water cooling optimization of temperature control for high RCC dam. In: Proceedings of the 2019 International Conference on Modeling, Simulation, Optimization and Numerical Techniques (SMONT 2019). Atlantis Press, pp. 136-139. https://doi.org/10.2991/smont-19.2019.30.
|
Zhang, M.X., Li, M.C., Shen, Y., Ren, Q.B., Zhang, J.R., 2019b. Multiple mechanical properties prediction of hydraulic concrete in the form of combined damming by experimental data mining. Construction and Building Materials 207, 661-671. https://doi.org/10.1016/j.conbuildmat.2019.02.169.
|
Zhang, M.X., Li, M.C., Shen, Y., Zhang, J.R., 2019c. Isogeometric shape optimization of high RCC gravity dams with functionally graded partition structure considering hydraulic fracturing. Engineering Structures 179, 341-352. https://doi.org/10.1016/j.engstruct.2018.11.005.
|