Citation: | Muattar Saydi, Jian-li Ding. 2020: Impacts of topographic factors on regional snow cover characteristics. Water Science and Engineering, 13(3): 171-180. doi: 10.1016/j.wse.2020.09.002 |
Adam, J.C., Hamlet, A.F., Lettenmaier, D.P., 2009. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes 23(7), 962–972. https:// doi.org/10.1002/hyp.7201.
|
Chen, Y.N., Li, W.H., Fang, G.H., Li, Z., 2017. Hydrological modeling in glacierized catchments of central Asia: Status and challenges. Hydrology and Earth System Sciences 21, 669–684. https://doi.org/10.5194/hess-21-669-2017.
|
Chen, Y.N., Li, B.F., Fan, Y.T., Sun, C.J., Fang, G.H., 2019. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. Journal of Arid Land 11(2), 161–179. https://doi.org/10.1007/s40333-019-0050-5.
|
Dankers, R., Christensen, O.B., 2005. Climate change impact on snow coverage, evaporation and river discharge in the Sub-Arctic Tana Basin, Northern Fennoscandia. Climatic Change 69, 367–392. https://doi.org/10.1007/s10584-005-2533-y.
|
Datt, P., Srivastava, P.K., Negi, P.S., Satyawali, P.K., 2008. Surface energy balance of seasonal snow cover for snow-melt estimation in N-W Himalaya. Journal of Earth System Science 117, 567–573. https://doi.org/10.1007/s12040-008-0053-7.
|
Ding, B.H., Yang, K., Qin, J., Wang, L., Chen, Y.Y., He, X.B., 2014. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. Journal of Hydrology 513, 154–163. http://doi.org/10.1016/j.jhydrol.2014.03.038.
|
Dou, Y., Chen, X., Bao, A.M., Li, L.H., 2011. The simulation of snowmelt runoff in the ungauged Kaidu River Basin of TianShan Mountains, China. Environmental Earth Sciences 62, 1039–1045. https://doi.org/10.1007/s12665-010-0592-5.
|
Frei, A., Tedesco, M., Foster, J., Hall, D.K., Kelly, R., Robinson, D.A., 2012. A review of global satellite-derived snow products. Advances in Space Research 50(8), 1007–1029. https://doi.org/10.1016/j.asr.2011.12.021.
|
Gafurov, A., Bárdossy, A., 2009. Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences 13, 1361–1373. https://doi.org/10.5194/hess-13-1361-2009.
|
Gao, Y., Xie, H.J., Yao, T.D., Xue, C.H., 2010. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sensing of Environment 114(8), 1662–1675. https://doi.org/10.1016/j.rse.2010.02.017.
|
Hall, D.K., Riggs, G.A., Salomonson, V.V., 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment 54, 127–140. https://doi.org/10.1016/0034-4257(95)00137-P.
|
Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J., 2002. MODIS snow-cover products. Remote Sensing of Environment 83(1-2), 181–194. https:// doi.org/1016/s0034-4257(02)00095-0.
|
Hall, D.K., Riggs, G.A., 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes 21(12), 1534–1547. https://doi.org/10.1002/hyp.6715.
|
Hall, D.K., Riggs, G.A., Foster, J.L., Kumar, S.V., 2010. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sensing of Environment 114(3), 496–503. https://doi.org/10.1016/j.rse.2009.10.007.
|
Hasan,M.M., Wyseure, G., 2018. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Sci. Eng. 11(2), 157-166. https://doi.org/10.1016/j.wse.2018.07.002.
|
Hock, R., 1999. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. Journal of Glaciology 45(149), 101–111. https://doi.org/10.1017/s0022143000003087.
|
Hu, R.J., 2004. Physical Geography of the Tianshan Mountainous in China. China Environmental Science Press, Beijing (in Chinese).
|
Immerzeel, W.W., van Beek, L.P.H., Konz, M., Shrestha, A.B., Bierkens, M.F.P., 2012. Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change 110, 721–736. https://doi.org/10.1007/s10584-011-0143-4.
|
Jain, S.K., Goswami, A., Saraf, A.K., 2009. Role of elevation and aspect in snow distribution in Western Himalaya. Water Resources Management 23, 71–83. https://doi.org/10.1007/s11269-008-9265-5.
|
Klein, A.G., Barnett, A.C., 2003. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sensing of Environment 86(2), 162–176. https://doi.org/10.1016/s0034-4257(03)00097-x.
|
Lee, W.L., Liou, K.N., Wang, C.C., 2013. Impact of 3-D topography on surface radiation budget over the Tibetan Plateau. Theoretical and Applied Climatology 113, 95–103. https://doi.org/10.1007/s00704-012-0767-y.
|
Li, B.F., Chen, Y.N., Shi, X., 2012. Why does the temperature rise faster in the arid region of northwest China? Journal of Geographical Research: Atmospheres 117(D16). https://doi.org/10.1029/2012JD017953.
|
Li, K.M., Li, H.L., Wang, L., Gao, W.Y., 2011. On the relationship between local topography and small glacier change under climatic warming on Mt. Bogda, eastern Tian Shan, China. Journal of Earth Science 22, 515–527. https://doi.org/10.1007/s12583-011-0204-7.
|
Liang, T.G., Huang, X.D., Wu, C.X., Liu, X.Y., Li, W.L., Guo, Z.G., Ren, J.Z., 2008. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sensing of Environment 112(4), 1514–1526. https://doi.org/10.1016/j.rse.2007.06.001.
|
Liu, J.F., Chen, R.S., 2011. Studying the spatiotemporal variation of snow-covered days over China based on combined use of MODIS snow-covered days and in situ observations. Theoretical and Applied Climatology 106, 355–363. https://doi.org/10.1007/s00704-011-0441-9.
|
Liu, J.P., Zhang, W.C., Liu, T., 2017. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products. Journal of Arid Land 9, 763–777. https://doi.org/10.1007/s40333-017-0103-6.
|
Liu, X., Ke, C.Q., Shao, Z.D., 2015. Snow cover variations in Gansu, China, from 2002 to 2013. Theoretical and Applied Climatology 122, 487–496. https://doi.org/10.1007/s00704-014-1306-9.
|
López-Moreno, J.I., Pomeroy, J., Revuelto, J., Vicente-Serrano, S.M., 2013a. Response of snow processes to climate change: Spatial variability in a small basin in the Spanish Pyrenees. Hydrological Processes 27(18), 2637–2650. https://doi.org/10.1002/hyp.9408.
|
López-Moreno, J.I., Revuelto, J., Gilaberte, M., Morán-Tejeda, E., Pons, M., Jover, E., Esteban, P., García, C., Pomeroy, J.W., 2014. The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. Theoretical and Applied Climatology 117, 207–219. https://doi.org/10.1007/s00704-013-0991-0.
|
López-Moreno, V.L., Gupta, H.V., Clark, M., 2013b. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrology and Earth System Sciences 17, 1809–1823. https://doi.org/10.5194/hess-17-1809-2013.
|
Marcil, G.K., Trudel, M., Leconte, R., 2016. Using remotely sensed MODIS snow product for the management of reservoirs in a mountainous Canadian watershed. Water Resources Management 30(8), 2735–2747. https://doi.org/10.1007/s11269-016-1319-5.
|
Maskey, S., Uhlenbrook, S., Ojha, S., 2011. An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Climatic Change 108, 391–400. https://doi.org/10.1007/s10584-011-0181-y.
|
Mishra, B., Babel, M.S., Tripathi, N.K., 2014. Analysis of climatic variability and snow cover in the Kaligandaki River Basin, Himalaya, Nepal. Theoretical and Applied Climatology 116, 681–694. https://doi.org/10.1007/s00704-013-0966-1.
|
Morriss, B.F., Ochs, E., Deeb, E.J., Newman, S.D., Daly, S.F., Gagnon, J.J., 2016. Persistence-based temporal filtering for MODIS snow products. Remote Sensing of Environment 175, 130–137. https://doi.org/10.1016/j.rse.2015.12.030.
|
Negi, H.S., Kulkarni, A.V., Semwal, B.S., 2009. Estimation of snow cover distribution in Beas Basin, Indian Himalaya using satellite data and ground measurements. Journal of Earth System Science 118, 525–538. https://doi.org/10.1007/s12040-009-0039-0.
|
Parajka, J., Blöschl, G., 2008. Spatio-temporal combination of MODIS images: Potential for snow cover mapping. Water Resources Research 44(3), W03406. https://doi.org/10.1029/2007WR006204.
|
Parajka, J., Pepe, M., Rampini, A., Rossi, S., Blöschl, G., 2010. A regional snow-line method for estimating snow cover from MODIS during cloud cover. Journal of Hydrology 381(3-4), 203–212. https://doi.org/10.1016/j.jhydrol.2009.11.042.
|
Pu, Z.X., Xu, L., Salomonson, V.V., 2007. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophysical Research Letters 34(6), L06706. https://doi.org/10.1029/2007GL029262.
|
Pu, Z.X., Xu, L., 2009. MODIS/Terra observed snow cover over the Tibet Plateau: Distribution, variation and possible connection with the East Asian Summer Monsoon (EASM). Theoretical and Applied Climatology 97, 265–278. https://doi.org/10.1007/s00704-008-0074-9.
|
Saydi, M., Ding, J., Sagan, V., Qin, Y., 2019. Snowmelt modeling using two melt-rate models in the Urumqi River watershed, Xinjiang Uyghur Autonomous Region, China. Journal of Mountain Science 16(10), 2271–2284. https://doi.org/10.1007/s11629-018-5365-8.
|
Sospedra-Alfonso, R., Melton, J.R., Merryfield, W.J., 2015. Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation. Geophysical Research Letters 42(11), 4429–4438. https://doi.org/10.1002/2015GL063898.
|
Tahir, A.A., Adamowski, J.F., Chevallier, P., Haq, A.U., Terzago, S., 2016. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush-Karakoram-Himalaya region, Pakistan) Meteorology and Atmospheric Physics 128,793–811. https://doi.org/10.1007/s00703-016-0440-6.
|
Tekeli, A.E., Akyürek, Z., ?orman, A.A., ?ensoy, A., ?orman, A.Ü., 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment 97(2), 216–230. https://doi.org/10.1016/j.rse.2005.03.013.
|
Tekeli, Y., Tekeli, A.E., 2012. A technique for improving MODIS standard snow products for snow cover monitoring over Eastern Turkey. Arabian Journal of Geosciences 5, 353–363. https://doi.org/10.1007/s12517-010-0274-3.
|
Wang, Q., Tenhunen, J.W., Schmidt, M., Kolcun, O., Droesler, M., 2006. A model to estimate global radiation in complex terrain. Boundary-Layer Meteorology 119, 409–429. https://doi.org/10.1007/s10546-005-9000-1.
|
Wang, X.W., Xie, H.J., Liang, T.G., 2007. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sensing of Environment 112(4), 1497–1513. https://doi.org/10.1016/j.rse.2007.05.016.
|
Wang, X.W., Xie, H.J., 2009. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. Journal of Hydrology 371(1-4), 192–200. https://doi.org/10.1016/j.jhydrol.2009.03.028.
|
Wang, X.W., Xie, H.J., Liang, T.G., Huang, X.D., 2009. Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrological Processes 23(3), 419–429. https://doi.org/10.1002/hyp.7151.
|
Whetton, P.H., Haylock, M.R., Galloway, R., 1996. Climate change and snow-cover duration in the Australian Alps. Climatic Change 32, 447–479. https://doi.org/10.1007/bf00140356.
|
Xu, C.C., Chen, Y.N., Li, W.H., Chen, Y.P., Ge, H.T., 2008. Potential impact of climate change on snow cover area in the Tarim River Basin. Environmental Geology 53, 1465–1474. https://doi.org/10.1007/s00254-007-0755-1.
|
Zhang, B.P., Mo, S.G., Wu, H.Z., Xiao, F., 2004. Digital spectra and analysis of altitudinal belts in Tianshan Mountains, China. Journal of Mountain Science 1, 18–28. https://doi.org/10.1007/bf02919356.
|
Zhang, Y.H., Cao, T., Kan, X., Wang, J.G., Tian, W., 2017. Spatial and temporal variation analysis of snow cover using MODIS over Qinghai-Tibetan Plateau during 2003–2014. Journal of the Indian Society of Remote Sensing 45, 887–897. https://doi.org/10.1007/s12524-016-0617-y.
|
Zheng, W.L., Du, J.K., Zhou, X.B., Song, M.M., Bian, G.D., Xie, S.P., Feng, X.Z., 2017. Vertical distribution of snow cover and its relation to temperature over the Manasi River Basin of Tianshan Mountains, Northwest China. Journal of Geographical Sciences 27, 403–419. https://doi.org/10.1007/s11442-017-1384-6.
|
Zhou, X.B., Xie, H.J., Hendrickx, J.M.H., 2005. Statistical evaluation of MODIS snow cover products with constraints from streamflow and SNOTEL measurement. Remote Sensing of Environment 94(2), 214–231. https://doi.org/10.1016/j.rse.2004.10.007.
|