Citation: | Yun-xiao Mu, Lei Zhu, Tong-qing Shen, Meng Zhang, Yuan-yuan Zha. 2020: Influence of correlation scale errors on aquifer hydraulic conductivity inversion precision. Water Science and Engineering, 13(3): 243-252. doi: 10.1016/j.wse.2020.09.004 |
Bohling, G.C., Zhan, X.Y., Butler Jr., J., Zheng, L., 2002. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities. Water Resources Research. 38(12), 60-1-60-15. https://doi.org/10.1029/2001WR001176.
|
Cardiff, M., Barrash, W., 2011. 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response. Water Resources Research. 47(12), W12518. https://doi.org/10.1029/2010WR010367.
|
Chen, X.L., Dong, H.Z., Chang, P., 2014. The heterogeneity of aquifer is characterized by steady flow hydraulic tomography. Frozen Ground and Foundation. 36(11), 83-85 (in Chinese). https://doi.org/10.13905/j.cnki.dwjz.2014.11.030.
|
Dong, Y.H., Li, G.M., Zhao, C.H., Ye, S.D., 2009. The heterogeneity of aquifer is characterized by hydraulic tomography. Engineering Investigation. 39(12), 58-61 (in Chinese).
|
Hanna, S., Yeh, T.-C.J., 1998. Estimation of co-conditional moments of transmissivity head and velocity fields. Advances in Water Resources. 22(1), 87-93. https:// doi.org/10.1016/s0309-1708(97)00033-x.
|
Hao, Y.H., Ye, T.Q., Han, B.P., Xiang, J.W., Zhu, F., Ni, C.F., 2008. The fracture zone of the aquifer is imaged by hydraulic tomography. Hydrogeology Engineering Geology. 35(6), 6-11 (in Chinese). https://doi.org/10.16030/j.cnki.issn. 1000-3665.2008.06.003.
|
Hoeksema, R.J., Kitanidis, P.K., 1984. An application of the geostatistical approach to the inverse problem in two dimensional groundwater modeling. Water Resources Research. 20(7), 1003-1020. https://doi.org/10.1029/WR020i007p01003.
|
Hughson, D.L., Yeh, T.-C.J., 2000. An inverse model for three-dimensional flow in variably saturated porous media. Water Resources Research. 36(4), 829-839. https://doi.org/10.1029/2000wr900001.
|
Illman, W.A., Liu, X., Craig, A., 2007. Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multimethod and multiscale validation of hydraulic conductivity tomography. Journal of Hydrology. 341(3), 222-234. https://doi.org/10.1016/j.jhydrol.2007.05.011.
|
Jiang, L.Q., Sun, R.L., Wang, W.M., Wang, J.S., 2017. Comparison of permeability field between hydraulic chromatography and kriging method for estimating heterogeneous aquifer. Earth Science. 42(2), 307-314 (in Chinese). https://doi.org/10.3799/dqkx.2017.023.
|
Jimenez, S., Brauchler, R., Bayer, P., 2013. A new sequential procedure for hydraulic tomographic inversion. Advances in Water Resources. 62, 59-70. https://doi.org/10.1016/j.advwatres.2013.10.002.
|
Kitanidis, P.K., Vomvoris, E.G.., 1983. A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resources Research. 19(3), 677-690. https://doi.org/10.1029/WR019i003p00677.
|
Liu, S.Y., Yeh, T.-C.J., Gardiner, R., 2002. Effectiveness of hydraulic tomography: Sandbox experiments. Water Resources Research. 38(4). 5-1−5-9. https://doi.org/10.1029/2001WR000338.
|
Tang, Y.Q., Shi, L.S., Yang, J.Z., 2012. Simulation of saturated and unsaturated water flow based on random collocation method. Journal of Sichuan University. 44(5), 30-37 (in Chinese). https://doi.org/10.15961/j.jsuese.2012. 05.006.
|
Xiang, J.W., Yeh, T.-C.J., Lee, C.H., Hsu, K.C., Wen, J.C., 2009. A simultaneous successive linear estimator and a guide for hydraulic tomography analysis. Water Resources Research. 45(2), W02432. https://doi.org/10.1029/2008WR007180.
|
Ye, T.Q., 2017. Advanced Groundwater Hydraulics. Geological Press, Beijing (in Chinese).
|
Yeh, T.-C.J., Srivastava, R., Guzman, A., Harter, T.,1993. A numerical model for water flow and chemical transport in variably saturated porous media. Ground Water. 31(4),634-644. https://doi.org/10.1111/j.1745-6584.1993.tb00597.x.
|
Yeh, T.-C.J., Gutjahr, A.L., Jin, M.H., 1995. An iterative cokriging-like technique for groundwater flow modeling. Ground Water. 33(1), 33-41. https://doi.org/10.1111/j.1745-6584.1995.tb00260.x.
|
Yeh, T.-C.J., Jin, M., Hanna, S., 1996. An iterative stochastic inverse method: Conditional effective transmissivity and head fields. Water Resources Research. 32(1), 85-92. https://doi.org/10.1029/95wr02869.
|
Yeh, T.-C.J., Liu, S.Y., 2000. Hydraulic tomography: Development of a new aquifer test method. Water Resources Research. 36(8), 2095-2105. https://doi.org/10.1029/2000wr900114.
|
Yeh, T.-C.J., Liu, S., Glass, R.J., Baker, K., Brainard, J.R., Alumbaugh, D., Labrecque, D., 2002. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resources Research. 38(12), 1278. https://doi.org/10.1029/ 2001WR001204.
|
Zhang, J.Q., Yeh, T.-C.J., 1997. An iterative geostatistical inverse method for steady flow in the vadose zone. Water Resources Research. 33(1), 63-71. https://doi.org/10.1029/96wr02589.
|
Zha, Y., Yeh, T.-C. J., Illman, W.A., Tanaka, T., Bruines, P., Onoe, H., Saegusa, H., 2015. What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments. Journal of Hydrology, 531(1), 17-30. https://doi.org/10.1016/j.jhydrol.2015.06.013.
|
Zha, Y., Yeh, T.-C. J., Illman, W. A., Tanaka, T., Bruines, P., Onoe, H., Saegusa, H., Mao, D., Takeuchi, S., Wen, J.-C., 2016. An application of hydraulic tomography to a large-scale fractured granite site, Mizunami, Japan. Groundwater, 54(6), 793-804. https://doi.org/10.1111/gwat.12421.
|
Zhao, Z.F., Illman, W.A., Yeh, T.-C.J., Berg, S.J., Mao, D.Q., 2015. Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study. Water Resources Research. 51, 4137–4155. https://doi.org/10.1002/2015WR016910.
|
Zhu, J.F., Yeh, T.-C.J., 2005. Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resources Research. 41(7), W07028. https://doi.org/10.1029/2004WR003790.
|