Citation: | Nilesh Kumar, Shriya Hans, Ritu Verma, Aradhana Srivastava. 2020: Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River. Water Science and Engineering, 13(3): 214-222. doi: 10.1016/j.wse.2020.09.005 |
Ajayan, K.V., Selvaraju, M., Unnikannan, P., Sruthi, P., 2015. Phycoremediation of tannery waste water using microalgae Scenedesmus species. International Journal of Phytoremediation 17(10), 907-916. https://doi.org/10.1080/15226514.2014.989313.
|
Al-Homaidan, A.A., Alabdullatif, J.A., Al-Hazzani, A.A., Al-Ghanayem, A.A., Alabbad, A.F., 2015. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences 22(6), 795–800. https://doi.org/10.1016/j.sjbs.2015.06.010.
|
Ali, R.M., Hamad, H.A., Hussein, M.M., Malash, G.F., 2016. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering 91, 317-332. https://doi.org/10.1016/j.ecoleng.2016.03.015.
|
Anitha, T., Kumar, P.S., Kumar, K.S., Ramkumarc, B., Ramalingamda, S., 2015. Adsorptive removal of Pb(II) ions from polluted water by newly synthesized chitosan-polyacrylonitrile blend: Equilibrium, kinetic, mechanism and thermodynamic approach. Process Safety and Environmental Protection 98, 187-197. https://doi.org/10.1016/j.psep.2015.07.012.
|
Bakatula, E.N., Cukrowska, E.M., Weiersbye, I.M., Mihaly-Cozmuta, L., Peter, A., Tutu, H., 2014. Biosorption of trace elements from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). Journal of Geochemical Exploration 144, 492–503. https://doi.org/10.1016/j.gexplo.2014.02.017.
|
Balaji, S., Kalaivani, T., Rajasekaran, C., Shalini, M., Siva, R., Singh, R.K., Akthar, M.A., 2014. Arthrospira (Spirulina) species as bioadsorbents for lead, chromium, and cadmium: A comparative study. Clean Soil Air Water 42, 1790-1797. https://doi.org/10.1002/clen.201300478.
|
Bennett, A., Bogorad, L., 1973. Complimentary chromatic adaptation in a filamentous blue green alga. Journal of Cell Biology 58(2), 419-435. https://doi.org/10.1083/jcb.58.2.419.
|
Bilal, M., Rasheed, T., Sosa-Hernández, J. E., Raza, A., Nabeel, F., Iqbal, H.M.N., 2018. Biosorption: An interplay between marine algae and potentially toxic elements: A review. Marine Drugs 16(2), 65. https://doi.org/10.3390/md16020065.
|
Carolin, C.F., Kumara, P.S., Saravanana, A., Joshibaa, G.J., Naushadb, M., 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering 5(3), 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029.
|
Çelekli, A., Bozkurt, H., 2011. Bio-sorption of cadmium and nickel ions using Spirulina platensis: Kinetic and equilibrium studies. Desalination 275, 141-147. https://doi.org/10.1016/j.desal.2011.02.043.
|
Central Pollution Control Board, Ministry of Environment & Forests, Government of India (CPCB). 2006. Water Quality Status of Yamuna River (1999–2005). Delhi, India.
|
Chojnacka, K., Chojnacki, A., Górecka, H., 2004. Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73(1-2), 147-153. https://doi.org/10.1016/j.hydromet.2003.10.003.
|
Chojnacka, K., 2010. Biosorption and bioaccumulation: The prospects for practical applications. Environment international 36(3), 299-307.https://doi.org/10.1016/j.envint.2009.12.001.
|
Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J., 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol. 11, 179–184. https://doi.org/10.1023/A:1008046023487.
|
Cracan, V., Banerjee, R., 2013. Cobalt and corrinoid transport and biochemistry, In: Banci, L., Sigel, A., Sigel, H., Sigel, R.K.O., eds., Metallomics and the Cell, Metal Ions in Life Sciences 12, Springer, New York, pp. 333-374. https://doi.org/10.1007/978-94-007-5561-1_10.
|
El-Sheekh, M.M., Fargh, A.A., Galal, H.R., Bayoumi, H.S., 2016. Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei, 27, 401-410. https://doi.org/10.1007/s12210-015-0495-1.
|
Farooq, U., Khan, M.A., Athar, M., Kozinski, J.A., 2011. Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chemical Engineering Journal 171(2), 400-410. https://doi.org/10.1016/j.cej.2011.03.094.
|
Fourest, E., Roux, J.C., 1992. HM biosorption by fungal mycelial byproducts: Mechanism and influence of pH. Applied Microbiology and Biotechnology, 37, 399-403. https://doi.org/10.1007/BF00211001.
|
Freisinger, E., Vasak, M., 2013. Cadmium in metallothioneins. In: Sigel, A., Sigel, H., Sigel, R.K.O., eds., Cadmium: From Toxicity to Essentiality, Metal Ions in Life Sciences 11. Springer, New York, pp. 339-372. https://doi.org/10.1007/978-94-007-5179-8_11.
|
Gao, F., Li, C., Yang, Z.H., Zeng, G.M., Mu, J., Liu, M., Cui, W., 2016. Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. Journal of Chemical Technology & Biotechnology 91, 2713–2719. https://doi.org/10.1002/jctb.4879.
|
Golterman, H.L., 1991. Direct nesslerization of ammonia and nitrate in fresh-water. Annales de Limnologie- Int. J. Limnol. 27(1), 99–101. https://doi.org/10.1051/limn/1991007.
|
Heiss, S., Wachter, A., Bogs, J, Cobbett, C., Rausch, T., 2003. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Journal of Experimental Botany 54(389), 1833-1839.https://doi.org/10.1093/jxb/erg205.
|
Hemlata, Fatma, T., 2009. Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bulletin of Environmental Contamination and Toxicology 83, 509-510. https://doi.org/10.1007/s00128-009-9837-y.
|
Hosikian, A., Lim, S., Halim, R., Danquah, M.K., 2010. Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering. 2010, 391632. https://doi.org/10.1155/2010/391632.
|
Hultberg, B., Andersson, A., Isaksson, A., 2001. Interaction of metals and thiols in cell damage and glutathione distribution: Potentiation of mercury toxicity by dithiothreitol. Toxicology 156(2-3), 93-100.https://doi.org/10.1016/s0300-483x(00)00331-0.
|
Iqbal, M., Saeed, A., Kalim, I., 2009. Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Separation Science and Technology 44(15), 3770–3791. https://doi.org/10.1080/01496390903182305.
|
Jozefczak, M., Remans, T., Vangronsveld, J., Cuypers, A., 2012. Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences 13(3), 3145-3175. https://doi.org/10.3390/ijms13033145.
|
Kaplan, D., 2013. Absorption and adsorption of HMs by microalgae. In: Richmond, A., Hu, Q., eds., Handbook of Microalgal Culture: Applied Phycology and Biotechnolog. Blackwell Publishing Ltd., pp. 439-611.https://doi.org/10.1002/9781118567166.ch32.
|
Khan, M.Y., Khan, F., 2015. Enzyme inhibition. In: Principles of Enzyme Technology. PHI Learning Pvt. Ltd., Delhi, pp. 125-151.
|
Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., 2013. Encyclopaedia of Metalloproteins. Springer, New York, pp. 595-669. https://doi.org/10.1007/978-1-4614-1533-6.
|
Kumar, P.S., Ramalingam, S., Abhinaya, R.V., Thiruvengadaravi, K.V., Baskaralingam, P., Sivanesan, S., 2011. Lead(II) adsorption onto sulphuricacid treated cashew nut shell. Separation Science and Technology 46, 2436–2449. https://doi.org/10.1080/01496395.2011.590174.
|
Kumar, P.S., Senthamarai, C., Durgadevia, A., 2012. Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of copper ions onto the surface modified agricultural waste. Environmental Progress & Sustainable Energy 33(1), 28-37. https://doi.org/10.1002/ep.11741.
|
Kumar, P.S., 2013. Adsorption of lead(II) ions from simulate wastewater using natural waste: A kinetic, thermodynamic and equilibrium study. Environmental Progress & Sustainable Energy 33(1), 55-64. https://doi.org/10.1002/ep.11750.
|
Kumar, M., Singh, A.K., Sikandar, M., 2018. Study of sorption and desorption of Cd(II) from aqueous solution using isolated green algae Chlorella vulgaris. Applied Water Science 8(225), 1-11. https://doi.org/10.1007/s13201-018-0871-y.
|
Lee, Y.K., Shen, H., 2004. Basic culturing techniques. In: Richmond, A., eds., Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Blackwell Science Ltd., Ames, pp. 40–56. https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/9780470995280#page=56.
|
Leite, L.D.S., Hoffmann, M.T., Daniel, L.A., 2019. Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. Journal of Water Process Engineering 31, 1-7. https://doi.org/10.1016/j.jwpe.2019.100821.
|
Lodi, A., Soletto, D., Solisio, D., Converti, A., 2008. Chromium(III) removal by Spirulina platensis biomass. Chemical Engineering Journal 136(2-3), 151–155. https://doi.org/10.1016/j.cej.2007.03.032.
|
Lyon, S., Ahmadzadeh, H., Murry, M., 2015. Algae-based wastewater treatment for biofuel production: Processes, species, and extraction methods. In: Moheimani, N.R., McHenry, M.P., de Boer, K., Bahri, P.A., eds., Biomass and Biofuels from Microalgae. Springer International Publishing, pp. 95-115. https://doi.org/10.1007/978-3-319-16640-7_6.
|
Markou, G., Mitrogiannis, D., Çelekli, A., Bozkurt, H., Georgakakis, D., Chrysikopoulos, C.V., 2015. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chemical Engineering Journal 259, 806-813. https://doi.org/10.1016/j.cej.2014.08.037.
|
Mehan, L., Verma, R., Kumar, R., Srivastava, A., 2018. Illumination wavelengths effect on Arthrospira platensis production and its process applications in River Yamuna water treatment. Journal of Water Process Engineering 23, 91-96. https://doi.org/10.1016/j.jwpe.2018.03.010.
|
Mehta, S.K., Gaur, J.P., 2005. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology 25(3), 113-152. https://doi.org/10.1080/07388550500248571.
|
Monod, J., 1949. The growth of bacterial cultures. Annual Review of Microbiology 3(1), 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103.
|
Murugesan, A., Divakaran, M., Senthilkumar, P., 2018. Enhanced adsorption of Cu2+, Ni2+, Cd2+ and Zn2+ ions onto physico-chemically modified agricultural waste: Kinetic, isotherm and thermodynamic studies. Desalination and Water Treatment 122, 176–191. https://doi.org/10.5004/dwt.2018.22771.
|
Nalimova, A.A., Popova, V.V., Tsoglin, L.N., Pronina, N.A., 2005. The effects of copper and zinc on Spirulina platensis growth and HM accumulation in its cells. Russian Journal of Plant Physiology 52(2), 229-234. https://doi.org/10.1007/s11183-005-0035-4
|
Narayana, B., Sunil, K., 2009. A spectrophotometric method for the determination of nitrite and nitrate. Eurasian J. Anal. Chem. 4(2), 204–214.
|
Nithya, K., Sathish, A., Kumar, P.S., Ramachandran, T., 2016. Biosorption of hexavalent chromium from aqueous solution using raw and acid-treated biosorbent prepared from Lantana camara fruit. Desalination and Water Treatment 57(52), 25097-25113. https://doi.org/10.1080/19443994.2016.1145605.
|
Pawlik-Skowrońska, B., 2003. Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kütz. coming from habitats of different HM concentrations. Aquatic Botany 75(3), 189-198. https://doi.org/10.1016/s0304-3770%2802%2900175-4.
|
Prabu, D., Parthiban, R., Ponnusamy, S. N., Anbalangan, S., John, R., Titus, T., 2017. Sorption of Cu(II) ions by nano-scale zero valent iron supported on rubber seed shell. IET Nanobiotechnology 11(6), 714-724. https://doi.org/10.1049/iet-nbt.2016.0224.
|
Putri, L.S.E., Dewi, P.S., Dasumiati, 2017. Adsorption of Cd and Pb using biomass of microalgae Spirulina platensis. International Journal of GEOMATE 13(37), 121-126. https://doi.org/10.21660//2017.37.2582.
|
Randrianarison, G., Ashraf, M.A., 2017. Microalgae: A potential plant for energy production. Geology, Ecology, and Landscapes 1(2), 104-120. https://doi.org/10.1080/24749508.2017.1332853.
|
Romera, E., González, F., Ballester, A., Blázquez, M.L., Muñoz, J.A., 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technol. 98, 3344–3353. https://doi.org/10.1016/j.biortech.2006.09.026.
|
Schiewer, S., Volesky, B., 2000. Biosorption processes for heavy metal removal. In: Lovely, D.R., ed., Environmental Microbe-Metal Interactions. ASM Press, Washington, D.C., pp. 329–362. https://doi.org/10.1128/9781555818098.ch14.
|
Schmitt, D., Muller, A., Csogor, Z., Frimmel, F.H., Posten, C., 2001. The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Research 35(3), 779-785. https://doi.org/10.1016/s0043-1354(00)00317-1.
|
Shuler, M.L., Kargi, F., 2002. How cells grow. In: Bioprocess Eng. Basic Concepts, 2nd ed. Prentice Hall, Upper Saddle River, pp. 155-200.
|
Siripornadulsil, S., Traina, S., Verma, D.P.S., Sayre, R.T., 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. The Plant Cell 14(11), 2837-2847. https://doi.org/10.1105/tpc.004853.
|
Solisio, C., Lodi, A., Torre, P., Converti, A., Borghi, M.D., 2006. Copper removal by dry and re-hydrated biomass. Bioresource Technology 97 (14), 1756-1760. https://doi.org/10.1016/j.biortech.2005.07.018.
|
Stohs, S.J., Bagchi, D., 1993. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine 18, 321-336.https://doi.org/10.1016/0891-5849(94)00159-h.
|
Suganya, S., Saravanan, A., Kumar, P.S., Yashwanthraj, M., Rajan, P.S., Kayalvizhi, K., 2017. Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: Adsorption thermodynamics, kinetics, and equilibrium studies. Journal of Water Reuse and Desalination 7, 214-227. https://doi.org/10.2166/wrd.2016.200.
|
Surkatti, R., Al-Zuhair, S., 2018. Effect of cresols treatment by microalgae on the cells composition. Journal of Water Process Engineering 26, 250-256.https://doi.org/10.1016/j.jwpe.2018.10.022.
|
Sydor, A.M., Zamble, D.B., 2013. Nickel metallomics: General themes guiding nickel homeostatis. In: Banci, L., Sigel, A., Sigel, H., Sigel, K.O., eds., Metallomics and the Cell, Metal Ions in Life Sciences. Springer, New York, pp. 375-416.https://doi.org/10.1007/978-94-007-5561-1_11.
|
Tam, N.F.Y., Wong, Y.S., 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57(1), 45-50. https://doi.org/10.1016/0960-8524(96)00045-4.
|
Tsuji, N., Hirayanagi, N., Iwabe, O., Namba, T., Tagawa, M., Miyamoto, S., Miyasaka, H., Takagi, M., Hirata, K., Miyamoto, K., 2003. Regulation of phytochelatin synthesis by Zinc and Cadmium in marine green alga Dunaleliatertiolecta. Phytochemistry 62, 453-459.https://doi.org/10.1016/s0031-9422(02)00559-9.
|
Udaiyappan, A.F.M., Hasan, H.A., Takriff, M.S., Abdullah, S. R. S., 2017. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering 20, 8-21. https://doi.org/10.1016/j.jwpe.2017.09.006.
|
Verma, R., Kumar, R., Mehan, L., Srivastava, A., 2016. Carbon dioxide sequestration/utilization for microalgal growth in photobioreactor. International Journal Environmental Engineering 3, 162-165. https://doi.org/10.15224/978-1-63248-084-2-42.
|
Verma, R., Kumar, R., Mehan, L., Srivastava, A., 2018. Modified conventional bioreactor for microalgae cultivation. Journal of Bioscience and Bioengineering 125(2), 224-230. https://doi.org/10.1016/j.jbiosc.2017.09.003.
|
Verma, R., Srivastava, A., 2018. Carbon dioxide sequestration and its enhanced utilization by photoautotrophic microalgae. Environmental Development 27, 95-106. https://doi.org/10.1016/j.envdev.2018.07.004.
|
Verma, R., Mehan, L., Kumar, R., Srivastava, A., 2019. Computational fluid dynamics analysis of hydrodynamic shear stress generated by different impeller combinations in stirred bioreactor. Biochemical Engineering Journal 151, 107312. https://doi.org/10.1016/j.bej.2019.107312.
|
Wu, Q.H., Liu, L., Miron, A., Klímova, B., Wan, D., Ku?a, K., 2016. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Archives of Toxicology 90(8), 1817–1840. https://doi.org/10.1007/s00204-016-1744-5.
|
Yang, J.S., Cao, J., Xing, G.L., Yuan, H.L., 2015. Lipid production combined with biosorption and bioaccumulation of Cadmium, Copper, Mangenese and Zinc by oleaginous microalgae Chlorella minutissima UTEX 2341. Bioresource Technology 175, 537-544. https://doi.org/10.1016/j.biortech.2014.10.124.
|
Ye, J.J., Xiao, H.L., Xiao, B.L., Xu, W.S., Gao, L.X., Lin, G., 2015. Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyraleucosticta. Water Sci. Technol. 72(9), 1662–1666. https://doi.org/10.2166/wst.2015.386.
|
Zeraatkar, A.K., Ahmadzadeh, H., Talebi, A.F., Moheimani, N.R., McHenry M.P., 2016. Potential use of algae for heavy metal bioremediation: A critical review. Journal of Environmental Management 181, 817-831. https://doi.org/10.1016/j.jenvman.2016.06.059.
|
Zhou, G.J., Peng, F.Q., Zhang, L.J., Ying, G.G., 2012. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 19, 2918-2929. https://doi.org/10.1007/s11356-012-0800-9.
|