Volume 14 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
Jia Wei, Wei-guang Wang, Yin Huang, Yi-min Ding, Jian-yu Fu, Ze-feng Chen, Wan-qiu Xing. 2021: Drought variability and its connection with large-scale atmospheric circulations in Haihe River Basin. Water Science and Engineering, 14(1): 1-16. doi: 10.1016/j.wse.2020.12.007
Citation: Jia Wei, Wei-guang Wang, Yin Huang, Yi-min Ding, Jian-yu Fu, Ze-feng Chen, Wan-qiu Xing. 2021: Drought variability and its connection with large-scale atmospheric circulations in Haihe River Basin. Water Science and Engineering, 14(1): 1-16. doi: 10.1016/j.wse.2020.12.007

Drought variability and its connection with large-scale atmospheric circulations in Haihe River Basin

doi: 10.1016/j.wse.2020.12.007
Funds:

the National Natural Science Foundation of China 51979071

the National Natural Science Foundation of China 51779073

the National Natural Science Foundation of China 51809073

the Jiangsu Provincial Natural Science Fund for Distinguished Young Scholars BK20180021

More Information
  • Corresponding author: E-mail address: wangweiguang006@126.com, wangweiguang2016@126.com (Wei-guang Wang)
  • Received Date: 2020-06-22
  • Accepted Date: 2020-09-20
  • Available Online: 2020-12-16
  • Drought is one of the most widespread and devastating extreme climate events when water availability is significantly below normal levels for a long period. In recent years, the Haihe River Basin has been threatened by intensified droughts. Therefore, characterization of droughts in the basin is of great importance for sustainable water resources management. In this study, two multi-scalar drought indices, the standardized precipitation evapotranspiration index (SPEI) with potential evapotranspiration calculated by the Penman–Monteith equation and the standardized precipitation index (SPI), were used to evaluate the spatiotemporal variations of drought characteristics from 1961 to 2017 in the Haihe River Basin. In addition, the large-scale atmospheric circulation patterns were used to further explore the potential links between drought trends and climatic anomalies. An increasing tendency in drought duration was detected over the Haihe River Basin with frequent drought events occurring in the period from 1997 to 2003. The results derived from both SPEI and SPI demonstrated that summer droughts were significantly intensified. The analysis of large-scale atmospheric circulation patterns indicated that the intensified summer droughts could be attributed to the positive geopotential height anomalies in Asian mid-high latitudes and the insufficient water vapor fluxes transported from the south.

     

  • Wei-guang Wang is an editor of Water Science and Engineering. This paper was impartially handled by Prof. Zhong-bo Yu.
  • loading
  • Abatzoglou, J.T., Barbero, R., Wolf, J.W., Holden, Z.A., 2014. Tracking interannual streamflow variability with drought indices in the U.S. Pacific Northwest. J. Hydrometeorol. 15(5), 1900-1912. https://doi.org/10.1175/JHM-D-13-0167.1.
    Abramowitz, M., Stegun, I.A., 1965. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York, pp. 136-144.
    Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome.
    Arnell, N., Liu, C., Compagnucci, R., Cunha, L., Hanaki, K., Howe, C., Mailu, G., Shiklomanov, I., Stakhiv, E., 2001. Hydrology and water resources. Climate Change 2001. Impacts, Adaptation, and Vulnerability. Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, pp. 191-233.
    Ayantobo, O.O., Li, Y., Song, S.B., Yao, N., 2017. Spatial comparability of drought characteristics and related return periods in mainland China over 1961-2013. J. Hydrol. 550, 549-567. https://doi.org/10.1016/j.jhydrol.2017.05.019.
    Bao, Z.X., Zhang, J.Y., Wang, G.Q., Fu, G.B., He, R.M., Yan, X.L., Jin, J.L., Liu, Y.L., Zhang, A.J., 2012. Attribution for decreasing streamflow of the Haihe River Basin, northern China: Climate variability or human activities? J. Hydrol. 460-461, 117-129. https://doi.org/10.1016/j.jhydrol.2012.06.054.
    Cao, X.C., Wu, M.Y., Guo, X.P., Zheng, Y.L., Gong, Y., Wu, N., Wang, W.G., 2017. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total. Environ. 609, 587-597. https://doi.org/10.1016/j.scitotenv.2017.07.191.
    Chen, H.P., Sun, J.Q., 2015. Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Clim. 28(13), 5430-5447. https://doi.org/10.1175/JCLI-D-14-00707.1.
    Cong, Z.T., Zhao, J.J., Yang, D.W., Ni, G.H., 2010. Understanding the hydrological trends of river basins in China. J. Hydrol. 388(3-4), 350-356. https://doi.org/10.1016/j.jhydrol.2010.05.013.
    Corti, T., Muccione, V., Kollnerheck, P., Bresch, D., Seneviratne, S.I., 2009. Simulating past droughts and associated building damages in France. Hydrol. Earth Syst. Sci. 13, 1739-1747. https://doi.org/10.5194/hess-13-1739-2009.
    Ding, Y.H., Wang, Z.Y., Sun, Y., 2008, Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part Ⅰ: Observed evidences. Int. J. Climatol. 28(9), 1139-1161. https://doi.org/10.1002/joc.1615.
    Du, J., Fang, J., Xu, W., Shi, P.J., 2013. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch. Environ. Res. Risk Assess. 27(2), 377-387. https://doi.org/10.1007/s00477-012-0589-6.
    Duan, L., Rong, Y.S., Liang, P.D., 2008. Effect of West Pacific subtropical high on summer precipitation in North China. Meteorol. Sci. Technol. 36(3), 273-276. (in Chinese) http://www.zhangqiaokeyan.com/academic-journal-cn_meteorological-science-technology_thesis/0201254085165.html
    Dubrovsky, M., Svoboda, M.D., Trnka, M., Hayes, M.J., Wilhite, D.A., Zalud, Z., Hlavinka, P., 2009. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor. Appl. Climatol. 96(1-2), 155-171. https://doi.org/10.1007/s00704-008-0020-x.
    Easterling, D.R., Wallis, T.W.R., Lawrimore, J.H., Heim, R.R., 2007. Effects of temperature and precipitation trends on US drought. Geophys. Res. Lett. 34(20), 396. https://doi.org/10.1029/2007GL031541.
    Gao, F., Zhang, Y.H., Ren, X.L., Yao, Y.J., Hao, Z.C., Cai, W.Y., 2018. Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China. Nat. Hazards 92(2), 155-172. https://doi.org/10.1007/s11069-018-3196-0.
    Gao, T., Wang, H.L., 2017. Trends in precipitation extremes over the Yellow River Basin in North China: Changing properties and causes. Hydrol. Process. 31(13), 2412-2428. https://doi.org/10.1002/hyp.11192.
    Gibbs, W.J., Maher, J.V., 1967. Rainfall Deciles as Drought Indicators. Australian Bureau of Meteorology Bulletin, No. 48, Commonwealth of Australia.
    Gurrapu, S., Chipanshi, A., Sauchyn, D.J., Howard, A., 2014, Comparison of the SPI and SPEI on predicting drought conditions and streamflow in the Canadian prairies. In: Proceedings of the 28th Conference on Hydrology, American Meteorological Society, Altanta.
    He, J., Yang, X.H., Li, J.Q., Jin, J.L., Wei, Y.M., Chen, X.J., 2015. Spatiotemporal variation of meteorological droughts based on the daily comprehensive drought index in the Haihe River Basin, China. Nat Hazards 75(2), 199-217. https://doi.org/10.1007/s11069-014-1158-8.
    Helsel, D.R., Hirsch, R.M., 1992. Statistical Methods in Water Resources. Elsevier, Amsterdam, pp. 522.
    Huang, Q.Z., Zhang, Q., Singh, V.P., Shi, P.J., Zheng, Y.J., 2017. Variations of dryness/wetness across China: Changing properties, drought risks, and causes. Global Planet Change 155, 1-12. https://doi.org/10.1016/j.gloplacha.2017.05.010.
    Huang, R.H., Cai, R.S., Chen, J.L., Zhou, L.T., 2006. Interdecaldal variations of drought and flooding disasters in China and their association with the East Asian climate system. Chinese J. Atmos. Sci. 30(5), 730-743 (in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=22794303
    Hui, Y., Sun, S., 2003. Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence. Adv. Atmos. Sci. 20(6), 921-933. https://doi.org/10.1007/BF02915515.
    Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspiration and Irrigation Water Requirements: A Manual. American Society of Civil Engineers, NewYork.
    Ju, X.S., Yang, X.W., Chen, L.J., Wang, Y.W., 1997. Research on determination of station indexes and division of regional flood/drought grades in China. Quarterly Journal of Applied Meteorology 8(1), 26-33 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYQX701.003.htm
    Kalnay, E., Kanamitsu, M., Kistler, R., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77(3), 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2. doi: 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
    Kendall, M.G., 1970. Rank Correlation Methods. Griffin, London, pp. 202.
    Keyantash, J., Dracup, J.A., 2002. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 83(8), 1167-1180. https://doi.org/10.1175/1520-0477-83.8.1167.
    Labudová, L., Labuda, M., Takáč, J., 2016. Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland. Theor. Appl. Climatol. 128(1-2), 491-506. https://doi.org/10.1007/s00704-016-1870-2.
    Li, W.J., Qin, Z.H., Lin, L., 2010. Quantitative analysis of agro-drought impact on food security in China. J. Nat. Disasters. 19(3), 111-118 (in Chinese). https://doi.org/10.1016/S1875-2780(09)60057-2.
    Liu, B.J., Chen, C.L., Lian, Y.Q., Chen, J.F., Chen, X.H., 2015. Long-term change of wet and dry climatic conditions in the southwest karst area of China. Global Planet. Change 127, 1-11. https://doi.org/10.1016/j.gloplacha.2015.01.009.
    Liu, S.H., Yan, D.H., Wang, H., Li, C.Z., Weng, B.S., Qin, T.L., 2016. Standardized water budget index and validation in drought estimation of Haihe River Basin, North China. Adv. Meteorol. 2016, 1-10. https://doi.org/10.1155/2016/9159532.
    Liu, Z.Y., Zhou, P., Zhang, F.Q., Liu, X.D., Chen, G., 2013. Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China. Agr. Forest Meteorol. 182-183, 101-108. https://doi.org/10.1016/j.agrformet.2013.05.013.
    Lorenzo-Lacruz, J., Vicente-Serrano, S.M., López-Moreno, J.I., Beguería, S., García-Ruiz, J.M., Cuadrat, J.M., 2010. The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). J. Hydro. 386(1-4), 13-26. https://doi.org/10.1016/j.jhydrol.2010.01.001.
    Luo, G.Y., 2000. A general survey of the studies on El Niño and La Niña in China. Sci. Geogr. Sin. 20(3), 264-269 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200003011.htm
    Ma, M.W., Wang, W.C., Yuan, F., Ren, L.L., Tu, X.J., Zang, H.F., 2018. Application of a hybrid multiscalar indicator in drought identification in Beijing and Guangzhou, China. Water Science and Engineering 11(3), 177-186. https://doi.org/10.1016/j.wse.2018.10.003.
    Mann, H.B., 1945. Nonparametric tests against trend. Econometrica. 13(3), 245-259. https://doi.org/10.2307/1907187.
    Masud, M.B., Khaliq, M.N., Wheater, H.S., 2015. Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approaches. J. Hydrol. 522, 452-466. https://doi.org/10.1016/j.jhydrol.2014.12.058.
    Mckee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology. American Meteorological Society, Anaheim, pp. 179-184.
    Mckee, T.B., Doeskin, N.J., Kleist, J., 1995. Drought monitoring with multiple time scales. In: Proceedings of the 9th Conference on Applied Climatology. American Meteorological Society, Boston, pp. 233-236.
    Ming, B., Guo, Y.Q., Tao, H.B., Liu, G.Z., Li, S.K., Wang, P., 2015. SPEIpm-based research on drought impact on maize yield in North China Plain. J. Integr. Agr. 14(4), 660-669. https://doi.org/10.1016/S2095-3119(14)60778-4.
    Mishra, A.K., Singh, V.P., 2010. A review of drought concepts. J. Hydrol. 391(1-2), 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012.
    Montaseri, M., Amirataee, B., 2017. Comprehensive stochastic assessment of meteorological drought indices. Int. J. Climatol. 37, 998-1013. https://doi.org/10.1002/joc.4755.
    Ouyang, R., Liu, W., Fu, G., Liu, C., Hu, L., Wang, H., 2014. Linkages between Enso/PDO signals and precipitation, streamflow in China during the last 100 years. Hydrol. Earth. Syst. Sci. 18(9), 3651-3661. https://doi.org/10.5194/hess-18-3651-2014.
    Palmer, W., 1965. Meteorological Drought. U.S. Department of Commerce Weather Bureau Research Paper. Washington, DC., pp. 56.
    Páscoa, P., Gouveia, C.M., Russo, A., Trigo, R.M., 2016. The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012. Int. J. Biometeo. 61(3), 439-451. https://doi.org/10.1007/s00484-016-1224-x.
    Paulo, A.A., Rosa, R.D., Pereira, L.S., 2012. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Hazards. Earth Syst. Sci. 12(5), 1481-1491. https://doi.org/10.5194/nhess-12-1481-2012.
    Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London 193(1032), 120-145. https://doi.org/10.1098/rspa.1948.0037.
    Potop, V., Možný, M., Soukup, J., 2012. Drought evolution at various time scales in the lowland regions and their impact on vegetable crops in the Czech Republic. Agr. Forest Meteorol. 156, 121-133. https://doi.org/10.1016/j.agrformet.2012.01.002.
    Qian, D.L., Guan, Z.Y., Wang, L.J., 2009. Interdecadal variations of west pacific subtropical high area and changes in summer precipitation over China in boreal summer during the last 57 years. Trans. Atmos. Sci. 32(5), 677-685 (in Chinese). https://doi.org/10.1016/S1003-6326(09)60084-4.
    Qin, Y., Yang, D.W., Lei, H.M., Xu, K., Xu, X.Y., 2015. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe Basin of North China during the period of 1960-2010. J. Hydrol. 526, 55-67. https://doi.org/10.1016/j.jhydrol.2014.09.068.
    Roderick, M.L., Farquhar, G.D., 2002. The cause of decreased pan evaporation over the past 50 years. Science 298(5597), 1410-1411. https://doi.org/10.1126/science.1075390-a.
    She, D.X., Xia, J., 2018. Copulas-based drought characteristics analysis and risk assessment across the Loess Plateau of China. Water Resour. Manag. 32(2), 547-564. https://doi.org/10.1007/s11269-017-1826-z.
    Sheffield, J., Wood, E.F., Roderick, M.L., 2012. Little change in global drought over the past 60 years. Nature 491, 435-438. https://doi.org/10.1038/nature11575.
    Svoboda, M., Fuchs, B., 2017. Handbook of drought indicators and indices. In: Drought and Water Crises. Chemical Rubber Company (CRC) Press, Boca Raton, pp. 155-208. https://doi.org/10.1201/b22009.
    Szalai, S., Szinell, C.S., Zoboki, J., 2000. Drought monitoring in Hungary. In: Early Warning Systems for Drought Preparedness and Drought Management. World Meteorological Organization (WMO) Report. WMO, Lisboa, pp. 182-199.
    Tabari, H., Abghari, H., Talaee, P.H., 2014. Impact of the north Atlantic oscillation on streamflow in western Iran. Hydrol. Process. 28(15), 4411-4418. https://doi.org/10.1002/hyp.9960.
    Tan, H.J., Cai, R.S., Chen, J.L., Huang, R.H., 2017. Decadal winter drought in Southwest China since the late 1990s and its atmospheric teleconnection. Int. J. Climatol. 37(1), 455-467. https://doi.org/10.1002/joc.4718.
    Tang, B., Tong, L., Kang, S.Z., Zhang, L., 2011. Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe River Basin of North China. Agr. Water Manage. 98(10), 1660-1670. https://doi.org/10.1016/j.agwat.2011.06.006.
    Tao, H., Borth, H., Fraedrich, K., Su, B., Zhu, X.H., 2014. Drought and wetness variability in the Tarim River Basin and connection to large-scale atmospheric circulation. Int. J. Climatol. 34(8), 2678-2684. https://doi.org/10.1002/joc.3867.
    Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geogr. Rev. 38(1), 55-94. https://doi.org/10.2307/210739
    Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
    Wanders, N., Wada, Y., 2015. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 526, 208-220. https://doi.org/10.1016/j.jhydrol.2014.10.047.
    Wang, R., Zhang, J.Q., Guo, E.L., Zhao, C.L., Cao, T.H., 2019. Spatial and temporal variations of precipitation concentration and their relationships with large-scale atmospheric circulations across Northeast China. Atmos. Res. 222, 62-73. https://doi.org/10.1016/j.atmosres.2019.02.008.
    Wang, W.G., Shao, Q.X., Peng, S.Z., Zhang, Z.X., Xing, W.Q., An, G.Y., Yong, B., 2011. Spatial and temporal characteristics of changes in precipitation during 1957-2007 in the Haihe River Basin, China. Stoch. Env. Res. Risk. A. 25(7), 881-895. https://doi.org/10.1007/s00477-011-0469-5.
    Wang, W.G., Shao, Q.X., Yang, T., Peng, S.Z., Xing, W.Q., Sun, F.C., Luo, Y.F., 2013. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River Basin, China. Hydrol. Process. 27(8), 1158-1174. https://doi.org/10.1002/hyp.9299.
    Wang, W.G., Zou, S., Shao, Q.X., Xing, W.Q., Chen, X., Jiao, X.Y., Luo, Y.F., Yong, B., Yu, Z.B., 2016. The analytical derivation of multiple elasticities of runoff to climate change and catchment characteristics alteration. J. Hydro. 541, 1042-1056. https://doi.org/10.1016/j.jhydrol.2016.08.014.
    Wang, W.G., Ding, Y.M., Shao, Q.X., Xu, J.Z., Jiao, X.Y., Luo, Y.F., Yu, Z.B., 2017. Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agr. Forest Meteorol. 232, 89-105. https://doi.org/10.1016/j.agrformet.2016.08.008.
    Wang, Y.X., Li, J.Z., Feng, P., Hu, R., 2015. A time-dependent drought index for non-stationary precipitation series. Water Resour. Manag. 29(15), 5631-5647. https://doi.org/10.1007/s11269-015-1138-0.
    Wei, J., Tao, S., Zhang, Q., 2003. Analysis of drought in northern China based on the palmer severity drought index. Acta. Geographica. Sinica. 58(7), 91-99 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB2003S1010.htm
    Xing, W.Q., Wang, W.G., Shao, Q.X., Peng, S.Z., Yu, Z.B., Yong, B., Taylor, J., 2014. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Global. Planet Change 115, 1-15. https://doi.org/10.1016/j.gloplacha.2014.01.004.
    Xiong, J., Wu, B., Zhou, Y., Li, J., 2006. Estimating evapotranspiration using remote sensing in the Haihe Basin. In: Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Denver, pp. 1044-1047. https://doi.org/10.1109/IGARSS.2006.269.
    Xu, L., Zhang, W.C., 2018. Assessment of regional agricultural drought vulnerability and main influencing factors. Advances in Science and Technology of Water Resources 38(2), 14-19 (in Chinese). https://doi.org/10.3880/j.issn.1006-7647.2018.02.003.
    Xu, Z.Q., Fan, K., Wang, H.J., 2015. Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Clim. 28(10), 4086-4106. https://doi.org/10.1175/JCLI-D-14-00464.1.
    Yang, F., Lau, K.M., 2004. Trend and variability of china precipitation in spring and summer: Linkage to sea-surface temperatures. Int. J. Climatol. 24(13), 1625-1644. https://doi.org/10.1002/joc.1094.
    Yang, M., Yan, D., Yu, Y., Yang, Z., 2016. SPEI-based spatiotemporal analysis of drought in Haihe River Basin from 1961 to 2010. Adv. Meteorol. 2016(1), 1-10. https://doi.org/10.1155/2016/7658015.
    Yang, X.L., Zheng, W.F., Lin, C.Q., Ren, L.L., Wang, Y.Q., Zhang, M.R., Yuan, F., Jiang, S.H., 2017. Prediction of drought in the Yellow River based on statistical downscale study and SPI. Journal of Hohai University (Natural Sciences), 45(5), 377-383 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2017.05.001.
    Yang, Y.H., Watanabe, M., Zhang, X.Y., Zhang, J.Q., Wang, Q.X., Hayashi, S., 2006. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain. Agr. Water Manage. 82(1-2), 25-44. https://doi.org/10.1016/j.agwat.2005.07.020.
    Yang, Y.H., Tian, F., 2009. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. J. Hydrol. 374(3-4), 373-383. https://doi.org/10.1016/j.jhydrol.2009.06.040.
    Yin, J., Yan, D.H., Yang, Z.Y., Yuan, Z., Hao, C.L., 2014. Research on response of drought events in mountain area of Haihe River Basin based on multi-source data. Adv. Mater. Res. 955-959, 3026-3031. https://doi.org/10.4028/www.scientific.net/amr.955-959.3026.
    Yu, M.X., Li, Q.F., Hayes, M.J., Svoboda, M.D., Heim, R.R., 2014. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010? Int. J. Climatol. 34(3), 545-558. https://doi.org/10.1002/joc.3701.
    Zargar, A., Sadiq, R., Naser, B., Khan, F.I., 2011. A review of drought indices. Environ. Rev. 19(1), 333-349. https://doi.org/10.1139/A11-013.
    Zhang, B.Q., Wang, Z.K., Chen, G., 2017a. A sensitivity study of applying a two-source potential evapotranspiration model in the standardized precipitation evapotranspiration index for drought monitoring. Land. Degrad. Dev. 28(2), 783-793. https://doi.org/10.1002/ldr.2548.
    Zhang, D., Liu, X.M., Hong, H.Y., 2013. Assessing the effect of climate change on reference evapotranspiration in China. Stoch. Environ. Res. Risk. Assess. 27(8), 1871-1881. https://doi.org/10.1007/s00477-013-0723-0.
    Zhang, H., Jin, R., Zhang, Y., 2008. Relationships between summer northern polar vortex with sub-tropical high and their influence on precipitation in North China. J. Tropical. Meteor. 24(4), 417-422 (in Chinese). https://doi.org/10.3724/SP.J.1047.2008.00014.
    Zhang, Q., Wei, J., Tao, S., 2003. The decadal and interannual variations of drought in the northern China and association with the circulations. Climatic Environmental Res. 8(3), 307-318 (in Chinese). http://www.researchgate.net/publication/288950466_The_decadal_and_interannual_variations_of_drought_in_the_northern_China_and_association_with_the_circulations
    Zhang, Q., Xu, C.Y., Chen, X.H., Zhang, Z.X., 2011. Statistical behaviours of precipitation regimes in China and their links with atmospheric circulation 1960-2005. Int. J. Climatol. 31(11), 1665-1678. https://doi.org/10.1002/joc.2193.
    Zhang, Y.H., Li, W.W., Chen, Q.H., Pu, X., Xiang, L., 2017b. Multi-models for SPI drought forecasting in the north of Haihe River Basin, China. Stoch. Environ. Res. Risk Assess. 31(10), 2471-2481. https://doi.org/10.1007/s00477-017-1437-5.
    Zhang, Y.Q., You, Q.L., Lin, H.B., Chen, C.C., 2015. Analysis of dry/wet conditions in the Gan River Basin, China, and their association with large-scale atmospheric circulation. Global. Planet Change 133, 309-317. https://doi.org/10.1016/j.gloplacha.2015.09.005.
    Zong, Y., Wang, Y., Zhai, J., 2013. Spatial and temporal characteristics of meteorological drought in the Haihe River Basin based on standardized precipitation index. J. Arid Land Res. Environment 27(12), 198-202 (in Chinese). https://doi.org/10.13448/j.cnki.jalre.2013.12.020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (186) PDF downloads(466) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return