Citation: | Bo Chen, Zi-shen Huang, Teng-fei Bao, Zheng Zhu. 2021: Deformation early-warning index for heightened gravity dam during impoundment period. Water Science and Engineering, 14(1): 54-64. doi: 10.1016/j.wse.2021.03.001 |
Alrajoula, M.T., Al Zayed, I.S., Elagib N.A., Hamdi, M.R., 2016. Hydrological, socio-economic and reservoir alterations of Er Roseires Dam in Sudan. Science of the Total Environment, 566-567, 938-948. https://doi.org/10.1016/j.scitotenv.2016.05.029.
|
Bonaldi, P., Fanelli, M., Giuseppetti, G., 1977. Displacement forecasting for concrete dams. International Water Power and Dam Construction, 29(9), 42-50. http://www.researchgate.net/publication/312987502_DISPLACEMENT_FORECASTING_FOR_CONCRETE_DAMS
|
Bui, K.T.T., Bui, D.T., Zou, J.G., Doan, C.V., Revhaug, I., 2018. A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Computing and Applications, 29(12), 1495-1506. https://doi.org/10.1007/s00521-016-2666-0.
|
Chen, W.J., Ma, Z.Y., Dong, Y.X., 2002. New method for establishing mathematical model of dam safety monitoring. Journal of Hydraulic Engineering, 33(8), 91-95 (in Chinese). https://doi.org/10.3321/j.issn:0559-9350.2002.08.016.
|
Dai, B., Gu, C.S., Zhao, E.F., Qin, X.N., 2018. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Structural Control and Health Monitoring, 25(6), e2170. https://doi.org/10.1002/stc.2170.
|
De Sortis, A., Paoliani, P., 2007. Statistical analysis and structural identification in concrete dam monitoring. Engineering Structures, 29(1), 110-120. https://doi.org/10.1016/j.engstruct.2006.04.022.
|
Dou, S.Q., Li, J.J. Kang, F., 2019. Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model. Water Science and Engineering, 12(3), 188-195. https://doi.org/10.1016/j.wse.2019.09.002.
|
Fanelli, M., 1975. Control of dam displacements. Energia Elettrica, 52, 125-139. https://www.researchgate.net/publication/291838873_Control_of_Dam_Displacements/amp
|
Gu, C.S., Su, H.Z., Wang, S.W., 2016. Advances in calculation models and monitoring methods for long-term deformation behavior of concrete dams. Journal of Hydroelectric Engineering, 35(5), 1-14 (in Chinese). https://doi.org/10.11660/slfdxb.20160501.
|
Gu, C.S., Fu, X., Shao, C.F., Shi, Z.W., Su, H.Z., 2020. Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: A case study. International Journal of Environmental Research and Public Health, 17(1). https://doi.org/10.3390/ijerph17010319.
|
Gu, Y.C., Wang, S.J., Pang, Q., Wang, Y., Wu, Y.X., 2017. Study on early warning index of concrete dam's deformation based on the risk management. Journal of Hydraulic Engineering, 48(4), 480-487 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.20160374.
|
Gu, Y.C., Wu, Y.X., Huang, H.B., Pang, Q., 2020. Prediction model of dam safety behavior based on genetic algorithm optimized support vector machine. Journal of Hohai University (Natural Sciences), 48(5), 419-425 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2020.05.006.
|
Huang, Y.Y., Qu, L.X., Zhou, Y.H., Gong, J.W., Zhou S.W., Li, J.H., 2013. Low probability method based determination of temperature double-control index of concrete placing area and study on its early warning. Water Resources and Hydropower Engineering, 44(11), 49-52 (in Chinese). https://doi.org/10.3969/j.issn.1000-0860.2013.11.013.
|
Kang, F., Liu, J., Li, J.J., Li, S.J., 2017. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Structural Control and Health Monitoring, 24(10), e1997. https://doi.org/10.1002/stc.1997.
|
Lee, J., Fenves, G.L. 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892-900. https:// doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
|
Lei, P., Chang, X.L., Xiao, F., Zhang, G.J., 2011. Study on early warning index of spatial deformation for high concrete dam. Science China: Technological Sciences, 54(6), 1607-1614. https://doi.org/10.1007/s11431-011-4373-5.
|
Li, X., Li, Y.L., Lu, X., Wang, Y.F., Zhang, H., Zhang, P., 2019. An online anomaly recognition and early warning model for dam safety monitoring data. Structural Health Monitoring, 19(3), 796-809. https://doi.org/10.1177/1475921719864265.
|
Liu, N., 2016. Study on heightening schemes of Danjiangkou Reservoir for first stage of Middle Route South-to-North Water Transfer Project. Journal of Hydraulic Engineering, 37(8), 899-905 (in Chinese). https://doi.org/10.3321/j.issn:0559-9350.2006.08.001.
|
Lu, Y.H., Xia, S.F., Yue, Y.Z., Zhang, J.H., 2018. Key technology for dam heightening of Songyue RCC Dam. Chinese Journal of Geotechnical Engineering, 30(11), 1614-1619 (in Chinese). https://doi.org/10.3321/j.issn:1000-4548.2008.11.007.
|
Luo, D.N., Hu, Y., Li, Q.B., 2016. An interfacial layer element for finite element analysis of arch dams. Engineering Structures, 128, 400-414. https://doi.org/10.1016/j.engstruct.2016.09.048.
|
Ma, C.H., Yang, J., Cheng, L., Ran, L., 2020. Adaptive parameter inversion analysis method of rockfill dam based on harmony search algorithm and mixed multi-output relevance vector machine. Engineering Computations, 37(7), 2229-2249. https://doi.org/10.1108/EC-09-2019-0429.
|
Niu, J.T., 2020. Dam deformation monitoring model based on singular spectrum analysis and SVM optimized by PSO. Advances in Science and Technology of Water Resources, 40(6), 60-65 (in Chinese). https://doi.org/10.3880/j.issn.1006-7647.2020.06.011
|
Omran, M.E., Abbas, H., 1999. Strengthening, heightening and leakage control measures for an ancient Fariman dam in Iran. Symposium on Rehabilitation of Dams, at the 66th ICOLD Annual Meeting. Leiden, A. A. Balkema Publishers, 139-149.
|
Sevim, B., Altunișik, A.C., Bayraktar, A., Akköse, M., Adanur, S., 2012. Estimation of elasticity modulus of a prototype arch dam using experimental methods. Journal of Materials in Civil Engineering, 24(4), 321-329. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000361.
|
Su, H.Z., Wen, Z.P., Sun, X.R., Yang, M., 2015. Time-varying identification model for dam behavior considering structural reinforcement. Structural Safety, 57, 1-7. https://doi.org/10.1016/j.strusafe.2015.07.002.
|
Su, H.Z., Yan, X.Q., Liu, H.P., Wen, Z.P., 2017. Integrated multi-level control value and variation trend early-warning approach for deformation safety of arch dam. Water Resources Management, 31(6), 2025-2045. https://doi.org/10.1007/s11269-017-1631-8.
|
Su, H.Z., Fu, Z.Q., Wen, Z.P., 2019. SFPSO algorithm-based multi-scale progressive inversion identification for structural damage in concrete cut-off wall of embankment dam. Applied Soft Computing, 84. https: //doi.org/10.1016/j.asoc.2019.105679.
|
Topçu, İ. B., Uğurlu, A., 2007. Theory of elasticity on concrete and estimation of the static modulus of elasticity for dam concrete with composite models. Teknik Dergi, 18(1), 4055-4067. http://www.researchgate.net/publication/286832542_Theory_of_elasticity_on_concrete_and_estimation_of_the_static_modulus_of_elasticity_for_dam_concrete_with_composite_models
|
Wang, W.Q., Kuang, Y.H., Li, S.H., Ni, X.X., 2012. Back analysis of dam parameter under seismic action. Procedia Engineering, 28, 429-433. https://doi.org/10.1016/j.proeng.2012.01.745.
|
Wang, Y. J, Yang, H. T, Zhou, X. B, Wu, C., 2016. Study on influence of contact sliding along new-old concrete joint interfaces on gravity dam stability. Journal of Hydroelectric Engineering, 35(3), 121-128 (in Chinese). https://doi.org/10.11660/slfdxb.20160315.
|
Wu, B.B., Niu J.T., Su, H.Z., Yang, M., Wu, Z.R., Cui, X.B., 2019. An approach for deformation modulus mechanism of super-high arch dams. Structural Engineering & Mechanics, 69(5), 557-566. https://doi.org/10.12989/sem.2019.69.5.557.
|
Wu, Z.R., 2003. Hydraulic Structure Safety Monitoring Theory and Its Application. Higher Education Press, Beijing (in Chinese).
|
Yao, F.H., Guan, S.H., Yang, H., Chen, Y., Qiu, H.F., Ma, G., Liu, Q.W., 2019. Long-term deformation analysis of Shuibuya concrete face rockfill dam (China) based on response surface method and improved genetic algorithm. Water Science and Engineering, 12(3), 196-204. https://doi.org/10.1016/j.wse.2019.09.004.
|
Zhou, W., Li, S.L., Ma, G., Chang, X.L., Ma, X., Zhang, C., 2016. Parameters inversion of high central core rockfill dams based on a novel genetic algorithm. Science China: Technological Sciences, 59(5), 783-794. https://doi.org/10.1007/s11431-016-6017-2.
|
Zhu, B.F., Zhang, G.X., Wu, L.K., Hu, P., 2007. Measures for reducing the cracking of the binding interface between fresh and old concrete in heightening of gravity dam. Journal of Hydraulic Engineering, (6), 639-645 (in Chinese). https://doi.org/10.3321/j.issn:0559-9350.2007.06.001.
|