Citation: | Nicolás Diego Badano, Ángel Nicolás Menéndez. 2021: Numerical modeling of Reynolds scale effects for filling/emptying system of Panama Canal locks. Water Science and Engineering, 14(3): 237-245. doi: 10.1016/j.wse.2021.03.006 |
Ackers, P., 1987. Scale models: Examples of how, why and when-with some ifs and buts. In: Proceedings of Technical Session B, XXⅡ IAHR Congress. IAHR, Lausanne.
|
American Society of Mechanical gineers (ASME), 2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer (ASME V&V 20-2009). ASME.
|
Badano, N.D., Menéndez, A.N., 2020. Accuracy of boundary layer treatments at different Reynolds scales. Open Eng. 10(1), 295-310. https://doi.org/10.1515/eng-2020-0033.
|
Caretto, L., Gosman, A., Pantakar, S., Spalding, D., 1972. Two calculation procedures for steady, three-dimensional flows with recirculation. In:Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Springer, Berlin, Heidelberg, pp. 60-68. https://doi.org/10.1007/BFb0112677.
|
Castro-Orgaz, O., Hager, W.H., 2014. Scale effects of round-crested weir flow. J. Hydraul.Res.52(5),653-665.https://doi.org/10.1080/00221686.2014.910277.
|
Colebrook, C.F., White, C.M., 1937. Experiments with fluid friction in roughened pipes. Proc. Math. Phys. Eng. Sci. 161(906), 367-381. https://doi.org/10.1098/rspa.1937.0150.
|
Erpicum, S., Tullis, B.P., Lodomez, M., Archambeau, P., Dewals, B.J., Piroton, M., 2016. Scale effects in physical piano key weirs models. J. Hydraul. Res. 54(6), 692-698. https://doi.org/10.1080/00221686.2016.1211562.
|
Heller,V.,2011.Scaleeffectsinphysicalhydraulicengineeringmodels.J.Hydraul. Res. 49(3), 293-306. https://doi.org/10.1080/00221686.2011.578914.
|
Higuera, P., Losada, I.J., Lara, J.L., 2015. Three-dimensional numerical wave generation with moving boundaries. Coast. Eng. 101, 35-47. https://doi.org/10.1016/j.coastaleng.2015.04.003.
|
International Organization for Standardization (ISO), 2003. Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full, Part 2: Orifice Plate (ISO 5167).
|
Jasak, H., 1996. Error Analysis and Estimation for Finite Volume Method with Applications to Fluids Flow. Ph. D. Dissertation. Imperial College of Science, Technology and Medicine, London.
|
Johnson, M.C., Savage, B.M., 2006. Physical and numerical comparison of flow over ogee spillway in the presence of tailwater. J. Hydraul. Eng. ASCE 132(12), 1353-1357. https://doi.org/10.1061/(ASCE)0733-9429(2006) 132:12(1353).
|
Kalitzin, G., Medic, G., Iaccarino, G., Durbin, P., 2005. Near-wall behavior of RANS turbulence models and implications for wall functions. J. Comput. Phys. 204(1), 265-291. https://doi.org/10.1016/j.jcp.2004.10.018.
|
Kim, D.G., Park, J.H., 2005. Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE J. Civil Eng. 9, 161-169. https://doi.org/10.1007/BF02829067.
|
Kim, J., Yadav, M., Kim, S., 2014. Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow. Eng. Appl. Comput. Fluid Mech. 8(2), 229-239. https://doi.org/10.1080/19942060.2014.11015509.
|
Menéndez, A.N., Badano, N.D., 2011. Interaction between hydraulic and numerical models for the design of hydraulic structures. Hydrodynamics:Optimizing Method Tool 225-244. https://doi.org/10.5772/28688.
|
Menéndez, A.N., Badano, N.D., Lecertu á, E.A., 2013. A strategy for the interaction between hydraulic and numerical models. In: Proceedings of the 35th IAHR World Congress. IAHR, Chengdu.
|
Menéndez, A.N., Lecertua, E.A., Badano, N.D., 2014. Optimización del diseño del sistema de llenado/vaciado del Tercer Juego de Esclusas del Canal de Panamá. RIBAGUA 1(1), 4-13 (in Spanish). https://doi.org/10.1016/S2386-3781(15)30003-7.
|
Menter, F.R., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. In: Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer. Begell House, Antalya, pp. 625-632.
|
Pfister, M., Battisacco, E., De Cesare, G., Scheleiss, A.J., 2013. Scale effects related to the rating curve of cylindrically crested piano key weirs. In:Proceedings of the 2nd International Workshop on Labyrinth and Piano Key Weirs. CRC Press, Boca Raton, pp. 73-82.
|
Pope, S.B., 2000. Turbulent Flows. Cambridge University Press. https://doi.org/10.1017/CBO9780511840531.
|
Reader-Harris, M.J., 1998. The equation for the expansibility factor for orifice plates. In: Proceedings of FLOMEKO, vol. 98. Lund, pp. 209-214.
|
Rhie, C., Chow, W., 1983. Numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21(11), 1525-1532. https://doi.org/10.2514/3.8284.
|
Roache, P.J., 1994. Perspective: A method for uniform reporting of frid refinement studies. J. Fluid Eng. 116(3), 405-413. https://doi.org/10.1115/1.2910291.
|
Sutherland, J., Barfuss, S.L., 2011. Composite modelling: Combining physical and numerical models. In: Proceedings of the 34th IAHR World Congress. IAHR, Brisbane.
|
Yalin, M., 1971. Theory of Hydraulic Models. Macmillan, London. https://doi.org/10.1007/978-1-349-00245-0.
|