Volume 14 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
Li-xiao Ni, Cun-hao Du, Han-qi Wu, Yan Li, Xiang-lan Li, Chu Xu. 2021: Preparation and characterization of Fe2O3/Bi2WO6 composite and photocatalytic degradation mechanism of microcystin-LR. Water Science and Engineering, 14(2): 109-118. doi: 10.1016/j.wse.2021.06.002
Citation: Li-xiao Ni, Cun-hao Du, Han-qi Wu, Yan Li, Xiang-lan Li, Chu Xu. 2021: Preparation and characterization of Fe2O3/Bi2WO6 composite and photocatalytic degradation mechanism of microcystin-LR. Water Science and Engineering, 14(2): 109-118. doi: 10.1016/j.wse.2021.06.002

Preparation and characterization of Fe2O3/Bi2WO6 composite and photocatalytic degradation mechanism of microcystin-LR

doi: 10.1016/j.wse.2021.06.002
Funds:

the National Natural Science Foundation of China 91647206

the National Natural Science Foundation of China 51779079

the National Natural Science Foundation of China 51579073

the National Natural Science Foundation of China 51979137

the Fundation for Innovation Research Groups of the National Natural Science Fundation of China 51421006

More Information
  • Corresponding author: E-mail address: nilixiao@hhu.edu.cn (Li-xiao Ni)
  • Received Date: 2020-10-14
  • Accepted Date: 2020-12-15
  • Available Online: 2021-06-11
  • The long-standing popularity of semiconductor photocatalysis, due to its great potential in a variety of applications, has resulted in the creation of numerous semiconductor photocatalysts, and it stimulated the development of various characterization methods. In this study, Fe2O3/Bi2WO6 composite with a flower-like microsphere and hierarchical structure was synthesized with the facile hydrothermal-impregnation method without any surfactants. X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy, and photoluminescence spectroscopy were used to characterize the structures of the samples. The specific surface area was estimated with the Brunauer-Emmett-Teller (BET) method, and pore size distribution was determined using the Barrett-Joyner-Halenda (BJH) method. The synthesized Fe2O3/Bi2WO6 composite had an average diameter of approximately 4 nm, with smaller specific surface area and larger pore diameter than those of pristine Bi2WO6. The results of XRD and SEM analyses confirmed that the composite was composed of Fe2O3 and Bi2WO6. The absorption edge of Bi2WO6 was at a wavelength of 460 nm. By contrast, the absorption edge of Fe2O3/Bi2WO6 to visible light was redshifted to 520 nm, with narrower bandgap width and stronger visible light response. It was also found that the main active substances in the degradation of microcystin-LR (MC-LR) were hydroxyl radicals (·OH) and electron holes (h+). Consequently, the results further showed that the heterojunction between Fe2O3 and Bi2WO6 can improve the charge transfer rate and effectively separate the photoinduced electrons and holes. Compared with Bi2WO6, Fe2O3/Bi2WO6 had no significant difference in the adsorption capacity of MC-LR and had more efficient photocatalytic degradation activity of MC-LR. The degradation rates of MC-LR by Fe2O3/Bi2WO6 and Bi2WO6 reached 80% and 56%, respectively. The degradation efficiency of MC-LR was affected by the initial pH value, initial Fe2O3/Bi2WO6 concentration, and initial MC-LR concentration.

     

  • loading
  • Azzouzi, L.E., Qisse, N., Ennouhi, M., Bouziani, A., Ellouzi, I., Mountacer, H., Zrineh, A., Hajjaji, S.E., 2020. Photocatalytic degradation of doxycycline in aqueous solution using Fe2O3 and Fe2O3-Bi2WO6 catalysts. Mediterranean J. Chem. 10(3), 233-238. https://doi.org/10.13171/mjc02003141026lea.
    Bessekhouad, Y., Robert, D., Weber, J., 2004. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. Chem. 163(3), 569-580. https://doi.org/10.1016/j.jphotochem.2004.02.006.
    Cao, J., Luo, B.D., Lin, H.L., Xu, B.Y., Chen, S.F., 2012. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl. Catal. B Environ. 111, 288-296. https://doi.org/10.1016/j.apcatb.2011.10.010.
    Chang, C.J., Chen J.K., Lin, K.S., Wei, Y.H., Chao, P.Y., Huang, C.Y., 2020. Enhanced visible-light-driven photocatalytic degradation by metal wire-mesh supported Ag/flower-like Bi2WO6 photocatalysts. J. Alloys Compd. 813, 152-186. https://doi.org/10.1016/j.jallcom.2019.152186. doi: 10.1097/01.gox.0000721120.93963.76
    Chen, L., Hua, H., Yang, Q., Hu, C.G., 2015. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets. Appl. Surf. Sci. 327, 62-67. https://doi.org/10.1016/j.apsusc.2014.11.117.
    Chen, L., He, J., Liu, Y., Chen, P., Au, C.T., Yin, S.F., 2016. Recent advances in bismuth-containing photocatalysts with heterojunctions. Chin. J. Catal. 37(6), 780-791. https://doi.org/10.1016/S1872-2067(15)61061-0.
    Chen, S.F., Hu, Y.F., Meng, S.G., Fu, X.L., 2014. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B Environ. 150-151, 564-573. https://doi.org/10.1016/j.apcatb.2013.12.053.
    Colon, G., Murcia, L.S., Hidalgo, M.C., Navio, J.A., 2010. Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation. Chem. Commun. 46(26), 4809. https://doi.org/10.1039/c0cc00058b.
    Cruz, A.A., Antoniou, M.G., Hiskia, A., Pelaez, M., Song, W., O'Shea, K.E., He, X., Dionysiou, D.D., 2011. Can we effectively degrade microcystins? Implications on human health. Anti Canc. Agents Med. Chem. 11(1), 19-37. https://doi.org/10.2174/187152011794941217. doi: 10.3368/aoj.61.1.19
    Ge, L., Liu, J., 2011. Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6. Appl. Catal. B Environ. 105(3-4), 289-297. https://doi.org/10.1016/j.apcatb.2011.04.016.
    Guo, Y.D., Zhang, G.K., Liu, J., Zhang, Y.L., 2013. Hierarchically structured alpha-Fe2O3/Bi2WO6 composite for photocatalytic degradation of organic contaminants under visible light irradiation. RSC Adv. 3(9), 2963-2970. https://doi.org/10.1039/c2ra22741j.
    Huang, C., Chen, L.L., Li, H.P., Mu, Y.G., Yang, Z.G., 2019. Synthesis and application of Bi2WO6 for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation. RSC Adv. 9(48), 27768-27779. https://doi.org/10.1039/C9RA04445K. doi: 10.1039/c9ra04445k
    Jiang, Y.R., Chou, S.Y., Chang, J.L., Huang, S.T., Lin, H.P., Chen, C.C., 2015. Hydrothermal synthesis of bismuth oxybromide-bismuth oxyiodide composites with high visible light photocatalytic performance for the degradation of CV and phenol. RSC Adv. 5(39), 30851-30860. https://doi.org/10.1039/c5ra01702e. doi: 10.1039/C5RA01702E
    Lawton, L.A., Robertson, P.K.J., Cornish, B.J.P.A., Marr, I.L., Jaspars, M., 2003. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J. Catal. 213(1), 109-113. https://doi.org/10.1016/S0021-9517(02)00049-0.
    Liu, L., Lawton, L.A., Bahnemann, D.W., Liu, L., Proft, B., Robertson, P.K.J., 2009. The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials. Chemosphere 76(4), 549-553. https://doi.org/10.1016/j.chemosphere.2009.02.067. doi: 10.1109/CSO.2009.41
    Lu, N., Li, Y.Y., Huang, Z.L., Li, T., Ye, S.Y., Dionysiou, D.D., Song, X.L., 2019. Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene. Appl. Catal. B Environ. 246, 303-311. https://doi.org/10.1016/j.apcatb.2019.01.068.
    Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147(1), 1-59. https://doi.org/10.1016/j.cattod.2009.06.018.
    Massey, I.Y., Zhang, X., Yang, F., 2018. Importance of bacterial biodegradation and detoxification processes of microcystins for environmental health. J. Toxicol. Environ. Health B Crit. Rev. 21(6-8), 357-369. https://doi.org/10.1080/10937404.2018.1532701.
    Matmin, J., Affendi, I., Ibrahim, S., Endud, S., 2018. Additive-free rice starch-assisted synthesis of spherical nanostructured hematite for degradation of dye contaminant. Nanomaterials 8(9), 702. https://doi.org/10.3390/nano8090702.
    Murcia Lopez, S., Hidalgo, M.C., Navio, J.A., Colon, G., 2011. Novel Bi2WO6-TiO2 heterostructures for Rhodamine B degradation under sunlike irradiation. J. Hazard Mater. 185(2-3), 1425-1434. https://doi.org/10.1016/j.jhazmat.2010.10.065.
    Pantelic, D., Svircev, Z., Simeunovic, J., Vidovic, M., Trajkovic, I., 2013. Cyanotoxins: Characteristics, production and degradation routes in drinking water treatment with reference to the situation in Serbia. Chemosphere 91(4), 421-441. https://doi.org/10.1016/j.chemosphere.2013.01.003.
    Pelaez, M., Baruwati, B., Varma, R.S., Luque, R., Dionysiou, D.D., 2013. Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation. Chem. Commun. 49(86), 10118-10120. https://doi.org/10.1039/C3CC44415E. doi: 10.1039/c3cc44415e
    Schneider, O.M., Liang, R., Bragg, L., Jaciw-Zurakowsky, I., Fattahi., A., Rathod., S., Peng, P., Servos, R.R., Zhou, Y.M., 2019. Photocatalytic degradation of microcystins by TiO2 using UV-LED controlled periodic illumination. Catalysts 9(2), 181. https://doi.org/10.3390/catal9020181.
    Shang, M., Wang, W.Z., Zhang, L., Sun, S.M., Wang, L., Zhou, L., 2009. 3D Bi2WO6/TiO2 hierarchical heterostructure: Controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C 113(33), 14727-14731. https://doi.org/10.1021/jp9045808.
    Shephard, G.S., Stockenstrom, S., de Villiers, D., Engelbrecht, W.J., Wessels, G.F.S., 2002. Degradation of microcystintoxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Res. 36(1), 140-146. https://doi.org/10.1016/S0043-1354(01)00213-5.
    Tang, J.W., Zou, Z.G., Ye, J.H., 2004. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett. 92, 53-56. https://doi.org/10.1023/B:CATL.0000011086.20412.aa.
    Tian, Y., Hua, G.M., Xu, W., Li, N., Fang, M., Zhang, L.D., 2011. Bismuth tungstate nano/microstructures: Controllable morphologies, growth mechanism and photocatalytic properties. J. Alloys Compd. 509(3), 724-730. https://doi.org/10.1016/j.jallcom.2010.09.010.
    Umehara, A., Takahashi, T., Komorita, T., Orita, R., Chio, J.W., Takenaka, R., Mabuchi, R., Park, H.D., Tsutsumi, H., 2017. Widespread dispersal and bio-accumulation of toxic microcystins in benthic marine ecosystems. Chemoshpere 167, 492-500. https://doi.org/10.1016/j.chemosphere.2016.10.029.
    Wang, S.L., Wang, L.L., Ma, W.H., Johnson, D.M., Fang, Y.F., Jia, M.K., Huang, Y.P., 2015. Moderate valence band of bismuth oxyhalides (BiOXs, X = Cl, Br, I) for the best photocatalytic degradation efficiency of MC-LR. Chem. Eng. J. 259, 410-416. https://doi.org/10.1016/j.cej.2014.07.103.
    Wang, X.J., Chang, L.L., Wang, J.R., Song, N.N., Liu, H.L., Wan, X.L., 2013. Facile hydrothermal synthesis of Bi2WO6 microdiscs with enhanced photocatalytic activity. Appl. Surf. Sci. 270, 685-689. https://doi.org/10.1016/j.apsusc.2013.01.121.
    World Health Organization (WHO), 2017. WHO Guidelines for Drinking-water Quality: Fourth Edition Incorporating the First Addendum. World Health Organization, Geneva.
    Wu, L., Bi, J.H., Li, Z.H., Wang, X.X., Fu, X.Z., 2008. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catal. Today 131(1-4), 15-20. https://doi.org/10.1016/j.cattod.2007.10.089.
    Wu, Q.S., Feng, Y., Zhang, G.Y., Sun, Y.Q., Xu, Y.Y., Gao, D.Z., 2014. α-Fe2O3 modified Bi2WO6 flower-like mesostructures with enhanced photocatalytic performance. Mater. Res. Bull. 49, 440-447. https://doi.org/10.1016/j.materresbull.2013.09.031.
    Xu, C.X., Wei, X., Ren, Z.H., Wang, Y., Xu, G., Shen, G., Han, G., 2009. Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity. Mater. Lett. 63(26), 2194-2197. https://doi.org/10.1016/j.matlet.2009.07.014.
    Zanjanchi, M.A., Ebrahimian, A., Arvand, M., 2010. Sulphonated cobalt phthalocyanine-MCM-41: An active photocatalyst for degradation of 2, 4-dichlorophenol. J. Hazard Mater. 175(1-3), 992-1000. https://doi.org/10.1016/j.jhazmat.2009.10.108.
    Zeng, Y., Hao, R., Xing, B., Hou, Y., Xu, Z., 2010. One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chem. Commun. 46(22), 3920-3922. https://doi.org/10.1039/C0CC00246A. doi: 10.1039/c0cc00246a
    Zhang, L., Wang, H., Chen, Z., Wong, P.K., Liu, J., 2011. Bi2WO6 micro/nano-structures: Synthesis, modifications and visible-light-driven photocatalytic applications. Appl. Catal. B Environ. 106(1), 1-13. https://doi.org/10.1016/j.apcatb.2011.05.008. doi: 10.1055/sos-SD-103-00017
    Zhang, N., Chu, D.Q., 2020. Fabricating erythrocyte-like BiOI/Bi2WO6 heterostructures with enhancing the visible-light photocatalytic performance. J. Nanoparticle Res. 22(7). https://doi.org/10.1007/s11051-020-04938-z.
    Zhang, Z.J., Wang, W.Z., Shang, M., Yin, W.Z., 2010. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst. J. Hazard Mater. 177(1-3), 1013-1018. https://doi.org/10.1016/j.jhazmat.2010.01.020.
    Zhou, T.N., Yin, H.Y., Liu, Y.Q., Han, S.N., Chai, Y.M., Liu, C.G., 2010. Effect of phosphorus content on the active phase structure of NiMo/Al2O3 catalyst. J. Fuel Chem. Technol. 38(1), 69-74. http://www.sciencedirect.com/science/article/pii/S1872581310600205
    Zhu, S., Xu, T., Fu, H., Zhao, J., Zhu, Y., 2007. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol. 41(17), 6234-6239. https://doi.org/10.1021/es070953y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (340) PDF downloads(177) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return