Volume 14 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
Ming-jie He, Hao Li, Jian-rong Xu, Huan-ling Wang, Wei-ya Xu, Shi-zhuang Chen. 2021: Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network. Water Science and Engineering, 14(2): 149-158. doi: 10.1016/j.wse.2021.06.003
Citation: Ming-jie He, Hao Li, Jian-rong Xu, Huan-ling Wang, Wei-ya Xu, Shi-zhuang Chen. 2021: Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network. Water Science and Engineering, 14(2): 149-158. doi: 10.1016/j.wse.2021.06.003

Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network

doi: 10.1016/j.wse.2021.06.003
Funds:

the National Key Research and Development Program of China 2018YFC0407004

the Natural Science Foundation of China 51939004

the Natural Science Foundation of China 11772116

More Information
  • Corresponding author: E-mail address: wyxu@hhu.edu.cn (Wei-ya Xu)
  • Received Date: 2020-09-22
  • Accepted Date: 2021-03-22
  • Available Online: 2021-06-11
  • The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation's integrity and strength. To evaluate the degree of unloading relaxation, the long-short term memory (LSTM) network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam. Principal component analysis indicates that rock characteristics, the structural plane, the protection layer, lithology, and time are the main factors. The LSTM network results demonstrate the unloading relaxation characteristics of the left bank, and the relationships with the factors were also analyzed. The structural plane has the most significant influence on the distribution of unloading relaxation zones. Compared with massive basalt, the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect, with the average unloading relaxation period being 50 d. The protection layer can effectively reduce the unloading relaxation depth by approximately 20%.

     

  • loading
  • Chen, B.-R., Li, Q.-P., Feng, X.-T., Xiao, Y.-X., Feng, G.-L., Hu, L.-X., 2014. Microseismic monitoring of columnar jointed basalt fracture activity: A trial at the baihetan hydropower station, China. J. Seismol. 18, 773-793. http://doi.org/10.1007/s10950-014-9445-0.
    Cui, J., Jiang, Q., Feng, X., Li, S., Liu, J., Chen, W., Zhang, J., Pei, S., 2018. Insights into statistical structural characteristics and deformation properties of columnar jointed basalts: Field investigation in the baihetan dam base, China. Bull. Eng. Geol. Environ. 77, 775-790. http://doi.org/10.1007/s10064-017-1029-0.
    Ertam, F., 2019. An effective gender recognition approach using voice data via deeper LSTM networks. Appl. Acoust. 156, 351-358. https://doi.org/10.1016/j.apacoust.2019.07.033.
    Fan, Q., Wang, Z., Xu, J., Zhou, M., Jiang, Q., Li, G., 2018. Study on deformation and control measures of columnar jointed basalt for Baihetan Super-High Arch Dam foundation. Rock Mech. Rock Eng. 51, 2569-2595. http://doi.org/10.1007/s00603-017-1378-9.
    Fei, S.P., Feng, X.T., Zhang, J.C., Wang, P.F., Jiang, Q., Zhou, Y.Y., Hao, X.J., Liu, J.F., 2018. Loosing characteristics of columnar jointed basalts in high-slope dam foundation during excavation and time-dependent Rock Soil Mech. 39(10), 3743-3754 (in Chinese). http://doi.org/10.16285/j.rsm.2018.0153.
    Gers, F.A., Schmidhuber, J., Cummins, F., 2000. Learning to forget: Continual prediction with LSTM. Neural Comput., 12(10), 2451-2471. https://doi.org/10.1162/089976600300015015.
    Gers, F.A., Eck, D., Schmidhuber, J., 2002. Applying LSTM to Time Series Predictable through Time-Window Approaches. Springer London, London, pp. 193-200. https://doi.org/10.1007/3-540-44668-0_93.
    Graves, A., Fernandez, S., Schmidhuber, J. 2005. Bidirectional LSTM networks for improved phoneme classification and recognition. In: Proceedings of International Conference on Artificial Neural Networks. Springer, pp. 799-804. https://doi.org/10.1007/11550907_126.
    Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J., 2017. Lstm: A search space odyssey. IEEE Trans. Neural Netw. Learn Syst. 28(10), 2222-2232. https://doi.org/10.1109/TNNLS.2016.2582924.
    Hao, X.J., Feng, X.T., Li, S.J., Jiang, Q., Duan, S.Q., Li, S.J., Yao, Z.B., 2015. Failure mode of columnar jointed basalt tunnel and its mechanism simulation. Rock Soil Mech. 36(3), 837-846 (in Chinese). https://doi.org/10.16285/j.rsm.2015.03.030.
    Hatzor, Y.H., Feng, X.-T., Li, S., Yagoda-Biran, G., Jiang, Q., Hu, L., 2015. Tunnel reinforcement in columnar jointed basalts: The role of rock mass anisotropy. Tunn. Undergr. Space Technol. 46, 1-11. https://doi.org/10.1016/j.tust.2014.10.008.
    Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527.
    Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9(8), 1735-1780, https://doi.org/10.1162/neco.1997.9.8.1735.
    Jiang, Q., Feng, X.T., Hatzor, Y.H., Hao, X.J., Li, S.J., 2014. Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan Hydropower Station, China. Eng. Geol. 175, 35-45. https://doi.org/10.1016/j.enggeo.2014.03.019.
    Jiang, Q., Wang, B., Feng, X.-T., Fan, Q.-X., Wang, Z., Pei, S., Jiang, S., 2019. In situ failure investigation and time-dependent damage test for columnar jointed basalt at the Baihetan left dam foundation. Bull. Eng. Geol. Environ. 78, 3875-3890, https://doi.org/10.1007/s10064-018-1399-y.
    Jin, C.-Y., Feng, X.-T., Zhang, C.-S., 2010. Research on initial stress field of baihetan hydropower station. Rock Soil Mech. (3), 845-850 (in Chinese). https://doi.org/10.16285/j.rsm.2010.03.025.
    Kalchbrenner, N., Danihelka, I., Graves, A., 2015. Grid Long-Short Term Memory. Cornel University Press, New York. http//arxiv.org/abs/1507.01526w3 [Retrieved May 02, 2021].
    Khokhlova, M., Migniot, C., Morozov, A., Sushkova, O., Dipanda, A., 2019. Normal and pathological gait classification LSTM model. Artif. Intell. Med. 94, 54-66. https://doi.org/10.1016/j.artmed.2018.12.007.
    Lin, P., Shi, J., Wei, P., Fan, Q., Wang, Z., 2019. Shallow unloading deformation analysis on Baihetan super-high arch dam foundation. Bull. Eng. Geol. Environ. 78, 5551-5568. https://doi.org/10.1007/s10064-019-01484-4.
    Meng, Q.-X., Wang, H.-L., Xu, W.-Y., Chen, Y.-L., 2019. Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass. Int. J. Rock Mech. Min. Sci. 124. https://doi.org/10.1016/j.ijrmms.2019.104127.
    Meng, Q., Wang, H., He, M., Gu, J., Qi, J., Yang, L., 2020. Displacement prediction of water-induced landslides using a recurrent deep learning model. Eur. J. Environ. Civ. Eng. 1-15, https://doi.org/10.1080/19648189.2020.1763847.
    Michielli, N., Acharya, U.R., Molinari, F., 2019. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput. Biol. Med. 106, 71-81. https://doi.org/10.1016/j.compbiomed.2019.01.013.
    Olah, C. 2015. Understanding LSTM networks. GIithub blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs/[Retrieved May 10, 2021].
    Ordonez, F.J., Roggen, D., 2016. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16, 115. https://doi.org/10.3390/s16010115.
    Shan, Z.-G., Di, S.-J., 2013. Loading-unloading test analysis of anisotropic columnar jointed basalts. J. Zhejiang Univ.: Sci. A 14, 603-614. https://doi.org/10.1631/jzus.A1200261.
    Shao, J.F., Chau, K.T., Feng, X.T., 2006. Modeling of anisotropic damage and creep deformation in brittle rocks. Int. J. Rock Mech. Min. Sci. 43(4), 582-592. https://doi.org/10.1016/j.ijrmms.2005.10.004.
    Wei, Y., Xu, M., Wang, W., Shi, A., Tang, M., Ye, Z., 2011. Feasibility of columnar jointed basalt used for high-arch dam foundation. J. Rock Mech. Geotech. Eng. 3, 461-468. https://doi.org/10.3724/SP.J.1235.2011.00461.
    Xu, W.Y., Jiang, H., Xie, S.Y., Ping, J. 1999. Rock slope deform ation prediction by artificial neural netw ork method in three Gorges project. Rock Soil Mech. (2), 27-31 (in Chinese). https://doi.org/10.16285/j.rsm.1999.02.007.
    Xu, W.-Y., Zheng, W.-T., Shi, A.-C., 2011. Classification and quality assessment of irregular columnar jointed basaltic rock mass for hydraulic engineering. J. Hydraul. Eng. 42, 262-270 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.2011.03.013.
    Zhang, Y., Li, M., Han, S., 2018. Automatic identification and classification in lithology based on deep learning in rock images. Acta Petrol. Sin. 34, 333-342. https://doi.org/10.000569/2018/03402.0333.42. doi: 10.1117/12.2503529
    Zhong, D., Liu, Y., Cheng, L., Yang, Q., Chen, Y., 2019. Study of unloading relaxation for excavation based on unbalanced force and its application in Baihetan Arch Dam. Rock Mech. Rock Eng. 52, 1819-1833, https://doi.org/10.1007/s00603-018-1653-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (254) PDF downloads(458) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return