Volume 14 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
Mohammad Delnavaz, Javad Farahbakhsh, Seyed Sajad Mahdian. 2021: Photodegradation of reactive blue 19 dye using magnetic nanophotocatalyst α-Fe2O3/WO3: A comparison study of α-Fe2O3/WO3 and WO3/NaOH. Water Science and Engineering, 14(2): 119-128. doi: 10.1016/j.wse.2021.06.007
Citation: Mohammad Delnavaz, Javad Farahbakhsh, Seyed Sajad Mahdian. 2021: Photodegradation of reactive blue 19 dye using magnetic nanophotocatalyst α-Fe2O3/WO3: A comparison study of α-Fe2O3/WO3 and WO3/NaOH. Water Science and Engineering, 14(2): 119-128. doi: 10.1016/j.wse.2021.06.007

Photodegradation of reactive blue 19 dye using magnetic nanophotocatalyst α-Fe2O3/WO3: A comparison study of α-Fe2O3/WO3 and WO3/NaOH

doi: 10.1016/j.wse.2021.06.007
Funds:

the Fund of Kharazmi University 22073

More Information
  • Corresponding author: E-mail address: delnavaz@khu.ac.ir (Mohammad Delnavaz)
  • Received Date: 2020-10-24
  • Accepted Date: 2021-02-05
  • Available Online: 2021-06-19
  • The photocatalytic degradation of reactive blue 19 (RB19) dye was investigated in a slurry system using ultraviolet (UV) and light-emitting diode (LED) lamps as light sources and using magnetic tungsten trioxide nanophotocatalysts (α-Fe2O3/WO3 and WO3/NaOH) as photocatalysts. The effects of different parameters including irradiation time, initial concentration of RB19, nanophotocatalyst dosage, and pH were examined. The magnetic nanophotocatalysts were also characterized with different methods including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), differential reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM). The XRD and FTIR analyses confirmed the presence of tungsten trioxide on the iron oxide nanoparticles. The VSM analysis confirmed the magnetic ability of the new synthesized nanophotocatalyst α-Fe2O3/WO3 with 39.6 emu/g of saturation magnetization. The reactor performance showed considerable improvement in the α-Fe2O3-modified nanophotocatalyst. The impact of visible light was specifically investigated, and it was compared with UV-C light under the same experimental conditions. The reusability of the magnetic nanophotocatalyst α-Fe2O3/WO3 was tested during six cycles, and the magnetic materials showed an excellent removal efficiency after six cycles, with just a 7% decline.

     

  • loading
  • Abbasi Asl, E., Haghighi, M., Talati, A., 2020. Enhanced simulated sunlight-driven magnetic MgAl2O4-AC nanophotocatalyst for efficient degradation of organic dyes. Separ. Purif. Technol. 251, 117003. https://doi.org/10.1016/j.seppur.2020.117003.
    Akyol, A., Bayramoglu, M., 2005. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst. J. Hazard Mater. 124(1), 241-246. https://doi.org/10.1016/j.jhazmat.2005.05.006.
    Al-Ani, Y., Li, Y., 2012. Degradation of C.I. reactive blue 19 using combined iron scrap process and coagulation/flocculation by a novel Al(OH)3-polyacrylamide hybrid polymer. J. Taiwan Inst. Chem. Eng. 43(6), 942-947. https://doi.org/10.1016/j.jtice.2012.07.005.
    Banic, N.D., Abramovic, B.F., Krstic, J.B., Sojic Merkulov, D.V., Fincur, N.L., Mitric, M.N., 2019. Novel WO3/Fe3O4 magnetic photocatalysts: Preparation, characterization and thiacloprid photodegradation. J. Ind. Eng. Chem. 70, 264-275. https://doi.org/10.1016/j.jiec.2018.10.025.
    Bel Hadjltaief, H., Galvez, M.E., Ben Zina, M., Da Costa, P., 2019. TiO2/clay as a heterogeneous catalyst in photocatalytic/photochemical oxidation of anionic reactive blue 19. Arabian J. Chem. 12(7), 1454-1462. https://doi.org/10.1016/j.arabjc.2014.11.006.
    Chen, J., Poon, C.-S., 2009. Photocatalytic activity of titanium dioxide modified concrete materials: Influence of utilizing recycled glass cullets as aggregates. J. Environ. Manag. 90(11), 3436-3442. https://doi.org/10.1016/j.jenvman.2009.05.029.
    Daneshvar, N., Salari, D., Khataee, A.R., 2003. Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters. J. Photochem. Photobiol. Chem. 157(1), 111-116. https://doi.org/10.1016/S1010-6030(03)00015-7.
    Daneshvar, N., Salari, D., Khataee, A.R., 2004. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. Chem. 162(2), 317-322. https://doi.org/10.1016/S1010-6030(03)00378-2.
    Gomez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M.J., Ortiz, I., Dionysiou, D.D., 2017. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407-427. https://doi.org/10.1016/j.cej.2016.04.140.
    Guimaraes, J.R., Guedes Maniero, M., Nogueira de Araujo, R., 2012. A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J. Environ. Manag. 110, 33-39. https://doi.org/10.1016/j.jenvman.2012.05.020.
    Han, F.G., Li, H.P., Fu, L., Yang, J., Liu, Z., 2016. Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation. Chem. Phys. Lett. 651, 183-187. https://doi.org/10.1016/j.cplett.2016.03.017.
    Hitkari, G., Singh, S., Pandey, G., 2018. Photoluminescence behavior and visible light photocatalytic activity of ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites. Trans. Nonferrous Metals Soc. China 28(7), 1386-1396. https://doi.org/10.1016/S1003-6326(18)64777-6.
    Hong, L., Liu, X.M., Tan, L., Cui, Z.D., Yang, X.J., Liang, Y.Q., Li, Z.Y., Zhu, S.L., Zheng, Y.F., Yeung, K.W.K., et al., 2019. Rapid biofilm elimination on bone implants using near-infrared-activated inorganic semiconductor heterostructures. Adv. Healthcare Mater. 8(19), 1900835. https://10.1002/adhm.201900835. doi: 10.1002/adhm.201900835
    Hosseini, S., Eftekhari, E., Soltani, S., Eghbali Babadi, F., Jeffery Minggu, L., Ismail, M.H.S., 2014. Synthesis, characterization and performance evaluation of three-layered photoanodes by introducing a blend of WO3 and Fe2O3 for dye degradation. Appl. Surf. Sci. 289, 53-61. https://10.1016/j.apsusc.2013.10.089. doi: 10.1016/j.apsusc.2013.10.089
    Kabra, A.N., Khandare, R.V., Govindwar, S.P., 2013. Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Res. 47(3), 1035-1048. https://doi.org/10.1016/j.watres.2012.11.007.
    Kako, T., Meng, X., Ye, J., 2014. Enhancement of photocatalytic activity for WO3 by simple NaOH loading. Appl. Catal. Gen. 488, 183-188. https://doi.org/10.1016/j.apcata.2014.09.046.
    Kansal, S.K., Singh, M., Sud, D., 2007. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard Mater. 141(3), 581-590. https://doi.org/10.1016/j.jhazmat.2006.07.035.
    Karimi, H., Rajabi, H.R., Kavoshi, L., 2020. Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: A comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots. J. Photochem. Photobiol. Chem. 397, 112534. https://doi.org/10.1016/j.jphotochem.2020.112534.
    Li, Y., Feng, J., Li, H., Wei, X., Wang, R., Zhou, A., 2016. Photoelectrochemical splitting of natural seawater with α-Fe2O3/WO3 nanorod arrays. Int. J. Hydrogen Energy 41(7), 4096-4105. https://doi.org/10.1016/j.ijhydene.2016.01.027.
    Lourenco, N.D., Franca, R.D.G., Moreira, M.A., Gil, F.N., Viegas, C.A., Pinheiro, H.M., 2015. Comparing aerobic granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment. Biochem. Eng. J. 104, 57-63. https://doi.org/10.1016/j.bej.2015.04.025.
    Manceriu, L., Carcel, R.A., 2011. Prediction of TiO2 and WO3 nanopowders surface charge by the evaluation of point of zero charge (PZC). Environ. Eng. Manag. J. 10(8), 1021-1026. https://10.30638/eemj.2011.148. doi: 10.30638/eemj.2011.148
    Marcucci, M., Nosenzo, G., Capannelli, G., Ciabatti, I., Corrieri, D., Ciardelli, G., 2001. Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138(1), 75-82. https://doi.org/10.1016/S0011-9164(01)00247-8.
    Mkhalid, I.A., 2016. Photocatalytic degradation of herbicides under visible light using Pd-WO3 nanorods. Ceram. Int. 42(14), 15975-15980. https://doi.org/10.1016/j.ceramint.2016.07.100.
    Mu, W.J., Yu, Q.H., Li, X.L., Wei, H.Y., Jian, Y., 2017. Efficient removal of Cs+ and Sr2+ from aqueous solution using hierarchically structured hexagonal tungsten trioxide coated Fe3O4. Chem. Eng. J. 319, 170-178. https://doi.org/10.1016/j.cej.2017.02.153.
    Parthibavarman, M., Karthik, M., Prabhakaran, S., 2018. Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 155, 224-232. https://doi.org/10.1016/j.vacuum.2018.06.021.
    Pirkarami, A., Olya, M.E., 2017. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 21(s1), S179-S186. https://doi.org/10.1016/j.jscs.2013.12.008.
    Serra, A., Pip, P., Gomez, E., Philippe, L., 2020. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins. Appl. Catal. B Environ. 268, 118745. https://doi.org/10.1016/j.apcatb.2020.118745.
    Wang, H.X., Wang, C.H., Cui, X.M., Qin, L., Ding, R.M., Wang, L.C., Liu, Z., Zheng, Z.F., Lv, B.L., 2018. Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl. Catal. B Environ. 221, 169-178. https://doi.org/10.1016/j.apcatb.2017.09.011.
    Xue, D., Zong, F., Zhang, J., Lin, X., Li, Q., 2019. Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone. Chem. Phys. Lett. 716, 61-68. https://doi.org/10.1016/j.cplett.2018.12.016.
    Yurtsever, A., Cinar, O., Sahinkaya, E., 2016. Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J. Membr. Sci. 511, 228-237. https://doi.org/10.1016/j.memsci.2016.03.044.
    Zhang, X.C., Tang, A.D., Jia, Y.R., Wang, Y.T., Wang, H.X., Zhang, S.Y., 2017. Enhanced visible-light-driven photocatalytic performance of Ag/AgGaO2 metal semiconductor heterostructures. J. Alloys Compd. 701, 16-22. https://doi.org/10.1016/j.jallcom.2017.01.085. doi: 10.3901/JME.2017.06.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (455) PDF downloads(524) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return