Citation: | Mohammad Delnavaz, Javad Farahbakhsh, Seyed Sajad Mahdian. 2021: Photodegradation of reactive blue 19 dye using magnetic nanophotocatalyst α-Fe2O3/WO3: A comparison study of α-Fe2O3/WO3 and WO3/NaOH. Water Science and Engineering, 14(2): 119-128. doi: 10.1016/j.wse.2021.06.007 |
Abbasi Asl, E., Haghighi, M., Talati, A., 2020. Enhanced simulated sunlight-driven magnetic MgAl2O4-AC nanophotocatalyst for efficient degradation of organic dyes. Separ. Purif. Technol. 251, 117003. https://doi.org/10.1016/j.seppur.2020.117003.
|
Akyol, A., Bayramoglu, M., 2005. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst. J. Hazard Mater. 124(1), 241-246. https://doi.org/10.1016/j.jhazmat.2005.05.006.
|
Al-Ani, Y., Li, Y., 2012. Degradation of C.I. reactive blue 19 using combined iron scrap process and coagulation/flocculation by a novel Al(OH)3-polyacrylamide hybrid polymer. J. Taiwan Inst. Chem. Eng. 43(6), 942-947. https://doi.org/10.1016/j.jtice.2012.07.005.
|
Banic, N.D., Abramovic, B.F., Krstic, J.B., Sojic Merkulov, D.V., Fincur, N.L., Mitric, M.N., 2019. Novel WO3/Fe3O4 magnetic photocatalysts: Preparation, characterization and thiacloprid photodegradation. J. Ind. Eng. Chem. 70, 264-275. https://doi.org/10.1016/j.jiec.2018.10.025.
|
Bel Hadjltaief, H., Galvez, M.E., Ben Zina, M., Da Costa, P., 2019. TiO2/clay as a heterogeneous catalyst in photocatalytic/photochemical oxidation of anionic reactive blue 19. Arabian J. Chem. 12(7), 1454-1462. https://doi.org/10.1016/j.arabjc.2014.11.006.
|
Chen, J., Poon, C.-S., 2009. Photocatalytic activity of titanium dioxide modified concrete materials: Influence of utilizing recycled glass cullets as aggregates. J. Environ. Manag. 90(11), 3436-3442. https://doi.org/10.1016/j.jenvman.2009.05.029.
|
Daneshvar, N., Salari, D., Khataee, A.R., 2003. Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters. J. Photochem. Photobiol. Chem. 157(1), 111-116. https://doi.org/10.1016/S1010-6030(03)00015-7.
|
Daneshvar, N., Salari, D., Khataee, A.R., 2004. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. Chem. 162(2), 317-322. https://doi.org/10.1016/S1010-6030(03)00378-2.
|
Gomez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M.J., Ortiz, I., Dionysiou, D.D., 2017. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407-427. https://doi.org/10.1016/j.cej.2016.04.140.
|
Guimaraes, J.R., Guedes Maniero, M., Nogueira de Araujo, R., 2012. A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J. Environ. Manag. 110, 33-39. https://doi.org/10.1016/j.jenvman.2012.05.020.
|
Han, F.G., Li, H.P., Fu, L., Yang, J., Liu, Z., 2016. Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation. Chem. Phys. Lett. 651, 183-187. https://doi.org/10.1016/j.cplett.2016.03.017.
|
Hitkari, G., Singh, S., Pandey, G., 2018. Photoluminescence behavior and visible light photocatalytic activity of ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites. Trans. Nonferrous Metals Soc. China 28(7), 1386-1396. https://doi.org/10.1016/S1003-6326(18)64777-6.
|
Hong, L., Liu, X.M., Tan, L., Cui, Z.D., Yang, X.J., Liang, Y.Q., Li, Z.Y., Zhu, S.L., Zheng, Y.F., Yeung, K.W.K., et al., 2019. Rapid biofilm elimination on bone implants using near-infrared-activated inorganic semiconductor heterostructures. Adv. Healthcare Mater. 8(19), 1900835. https://10.1002/adhm.201900835. doi: 10.1002/adhm.201900835
|
Hosseini, S., Eftekhari, E., Soltani, S., Eghbali Babadi, F., Jeffery Minggu, L., Ismail, M.H.S., 2014. Synthesis, characterization and performance evaluation of three-layered photoanodes by introducing a blend of WO3 and Fe2O3 for dye degradation. Appl. Surf. Sci. 289, 53-61. https://10.1016/j.apsusc.2013.10.089. doi: 10.1016/j.apsusc.2013.10.089
|
Kabra, A.N., Khandare, R.V., Govindwar, S.P., 2013. Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Res. 47(3), 1035-1048. https://doi.org/10.1016/j.watres.2012.11.007.
|
Kako, T., Meng, X., Ye, J., 2014. Enhancement of photocatalytic activity for WO3 by simple NaOH loading. Appl. Catal. Gen. 488, 183-188. https://doi.org/10.1016/j.apcata.2014.09.046.
|
Kansal, S.K., Singh, M., Sud, D., 2007. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard Mater. 141(3), 581-590. https://doi.org/10.1016/j.jhazmat.2006.07.035.
|
Karimi, H., Rajabi, H.R., Kavoshi, L., 2020. Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: A comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots. J. Photochem. Photobiol. Chem. 397, 112534. https://doi.org/10.1016/j.jphotochem.2020.112534.
|
Li, Y., Feng, J., Li, H., Wei, X., Wang, R., Zhou, A., 2016. Photoelectrochemical splitting of natural seawater with α-Fe2O3/WO3 nanorod arrays. Int. J. Hydrogen Energy 41(7), 4096-4105. https://doi.org/10.1016/j.ijhydene.2016.01.027.
|
Lourenco, N.D., Franca, R.D.G., Moreira, M.A., Gil, F.N., Viegas, C.A., Pinheiro, H.M., 2015. Comparing aerobic granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment. Biochem. Eng. J. 104, 57-63. https://doi.org/10.1016/j.bej.2015.04.025.
|
Manceriu, L., Carcel, R.A., 2011. Prediction of TiO2 and WO3 nanopowders surface charge by the evaluation of point of zero charge (PZC). Environ. Eng. Manag. J. 10(8), 1021-1026. https://10.30638/eemj.2011.148. doi: 10.30638/eemj.2011.148
|
Marcucci, M., Nosenzo, G., Capannelli, G., Ciabatti, I., Corrieri, D., Ciardelli, G., 2001. Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138(1), 75-82. https://doi.org/10.1016/S0011-9164(01)00247-8.
|
Mkhalid, I.A., 2016. Photocatalytic degradation of herbicides under visible light using Pd-WO3 nanorods. Ceram. Int. 42(14), 15975-15980. https://doi.org/10.1016/j.ceramint.2016.07.100.
|
Mu, W.J., Yu, Q.H., Li, X.L., Wei, H.Y., Jian, Y., 2017. Efficient removal of Cs+ and Sr2+ from aqueous solution using hierarchically structured hexagonal tungsten trioxide coated Fe3O4. Chem. Eng. J. 319, 170-178. https://doi.org/10.1016/j.cej.2017.02.153.
|
Parthibavarman, M., Karthik, M., Prabhakaran, S., 2018. Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 155, 224-232. https://doi.org/10.1016/j.vacuum.2018.06.021.
|
Pirkarami, A., Olya, M.E., 2017. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 21(s1), S179-S186. https://doi.org/10.1016/j.jscs.2013.12.008.
|
Serra, A., Pip, P., Gomez, E., Philippe, L., 2020. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins. Appl. Catal. B Environ. 268, 118745. https://doi.org/10.1016/j.apcatb.2020.118745.
|
Wang, H.X., Wang, C.H., Cui, X.M., Qin, L., Ding, R.M., Wang, L.C., Liu, Z., Zheng, Z.F., Lv, B.L., 2018. Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl. Catal. B Environ. 221, 169-178. https://doi.org/10.1016/j.apcatb.2017.09.011.
|
Xue, D., Zong, F., Zhang, J., Lin, X., Li, Q., 2019. Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone. Chem. Phys. Lett. 716, 61-68. https://doi.org/10.1016/j.cplett.2018.12.016.
|
Yurtsever, A., Cinar, O., Sahinkaya, E., 2016. Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J. Membr. Sci. 511, 228-237. https://doi.org/10.1016/j.memsci.2016.03.044.
|
Zhang, X.C., Tang, A.D., Jia, Y.R., Wang, Y.T., Wang, H.X., Zhang, S.Y., 2017. Enhanced visible-light-driven photocatalytic performance of Ag/AgGaO2 metal semiconductor heterostructures. J. Alloys Compd. 701, 16-22. https://doi.org/10.1016/j.jallcom.2017.01.085. doi: 10.3901/JME.2017.06.016
|