Volume 14 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
Qiu-sheng Yuan, Pei-fang Wang, Juan Chen, Chao Wang, Sheng Liu, Xun Wang. 2021: Influence of cascade reservoirs on spatiotemporal variations of hydrogeochemistry in Jinsha River. Water Science and Engineering, 14(2): 97-108. doi: 10.1016/j.wse.2021.06.008
Citation: Qiu-sheng Yuan, Pei-fang Wang, Juan Chen, Chao Wang, Sheng Liu, Xun Wang. 2021: Influence of cascade reservoirs on spatiotemporal variations of hydrogeochemistry in Jinsha River. Water Science and Engineering, 14(2): 97-108. doi: 10.1016/j.wse.2021.06.008

Influence of cascade reservoirs on spatiotemporal variations of hydrogeochemistry in Jinsha River

doi: 10.1016/j.wse.2021.06.008
Funds:

the National Key Research and Development Program of China 2016YFC0502203

the National Science Funds for Creative Research Groups of China 51421006

the Key Program of the National Natural Science Foundation of China 91647206

More Information
  • Corresponding author: E-mail address: pfwang2005@hhu.edu.cn (Pei-fang Wang)
  • Received Date: 2020-08-15
  • Accepted Date: 2021-01-20
  • Available Online: 2021-06-21
  • River hydrogeochemistry offers necessary guidance for effective water environmental management. However, the influence of cascade reservoirs on river hydrogeochemistry remains unknown. In this study, the Jinsha River, the headwaters of the Yangtze River of China, was selected to investigate the spatiotemporal variations of hydrogeochemistry after the construction of six cascade reservoirs. Major ions, total dissolved solids, electrical conductivity, and pH values of sampled water in the upper natural reaches and lower reservoir-regulated reaches were analyzed in both flood and dry seasons. The results of Piper diagram and Gibbs plots showed that the hydrogeochemistry of the Jinsha River was naturally controlled by both evaporation-crystallization and carbonate weathering processes, but it was also artificially affected by reservoirs. The impoundment of cascade reservoirs affected the hydrodynamic condition of the river. The river flow in the flood season was reduced by approximately 24.5%, altering the proportions of water sources and leading to notable hydrogeochemical alterations in reservoir-regulated reaches. Conversely, river hydrogeochemistry generally remained unchanged in the dry season, owing to the insignificant effect of cascade reservoirs on river flow. In contrast to what has been observed in previous studies of individual reservoirs, the cumulative influence of cascade reservoirs on the Jinsha River flow regime did not cause abrupt hydrogeochemical changes between the upstream and downstream areas of each reservoir. Moreover, the water quality assessments revealed that the impoundment of cascade reservoirs improved downstream irrigational water quality, with lower Na+ ratio values in the flood season. This study provides the earliest evaluation of cascade reservoir influence on the hydrogeochemistry of the Jinsha River. The findings of this study can be used as a reference for scientific guidelines for future environmental management of cascade reservoirs in large rivers.

     

  • loading
  • Chao, L., Yang, S.Y., Lian, E.G., Yang, C.F., Deng, K., Liu, Z.F., 2016. Damming effect on the Changjiang (Yangtze River) River water cycle based on stable hydrogen and oxygen isotopic records. J. Geochem. Explor. 165, 125-133. https://doi.org/10.1016/j.gexplo.2016.03.006.
    Chen, J., Wang, P.F., Wang, C., Wang, X., Miao, L.Z., Liu, S., Yuan, Q.S., Sun, S.H., 2020. Distinct assembly mechanisms underlie similar biogeographic patterns of rare and abundant bacterioplankton in cascade reservoirs of a large river. Front. Microbiol. 11, 158. https://doi.org/10.3389/fmicb.2020.00158. doi: 10.1504/ijmic.2020.10032858
    Chen, J.S., Wang, F.Y., Xia, X.H., Zhang, L.T., 2002. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 187(3-4), 231-255. https://doi.org/10.1016/S0009-2541(02)00032-3.
    Ellis, L.E., Jones, N.E., 2013. Longitudinal trends in regulated rivers: A review and synthesis within the context of the serial discontinuity concept. Environ. Rev. 21(3), 136-148. https://doi.org/10.1139/er-2012-0064.
    Fearnside, P.M., Pueyo, S., 2012. COMMENTARY: Greenhouse-gas emissions from tropical dams. Nat. Clim. Change 2(6), 382-384. https://doi.org/10.1038/nclimate1540.
    Gao, Y., Wang, B.L., Liu, X.L., Wang, Y.C., Zhang, J., Jiang, Y.X., Wang, F.S., 2013. Impacts of river impoundment on the riverine water chemistry composition and their response to chemical weathering rate. Front. Earth Sci. 7(3), 351-360. https://doi.org/10.1007/s11707-013-0366-y.
    Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science. 170(3962), 1088-1090. https://doi.org/10.1126/science.172.3985.870.
    Huang, W., Chen, J., Wang, B., 2010. Study on averaging effect of cascade hydropower development on flow and water temperature process. Resour. Environ. Yangtze Basin 19(3), 335-339 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CJLY201003019.htm
    Huang, X., Sillanpaa, M., Gjessing, E.T., Vogt, R.D., 2009. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci. Total Environ. 407(24), 6242-6254. https://doi.org/10.1016/j.scitotenv.2009.09.001.
    Huang, X.R., Gao, L.Y., Yang, P.P., Xi, Y.Y., 2018. Cumulative impact of dam constructions on streamflow and sediment regime in lower reaches of the Jinsha River, China. J. Mt. Sci. 15(12), 2752-2765. https://doi.org/10.1007/s11629-018-4924-3.
    Immerzeel, W.W., Pellicciotti, F., Bierkens, M.F.P., 2013. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 6(9), 742-745. https://doi.org/10.1038/NGEO1896. doi: 10.1038/ngeo1896
    Jin, G.Q., Tang, H.W., Li, L., Barry, D.A., 2015. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed. Water Resour. Res. 51(4), 1898-1915. https://doi.org/10.1002/2014wr016369.
    Jin, G.Q., Zhang, Z.T., Yang, Y.H., Hu, S.H., Tang, H.W., Barry, D.A., Li, L., 2020. Mitigation of impact of a major benzene spill into a river through flow control and in-situ activated carbon absorption. Water Res. 172, 115489. https://doi.org/10.1016/j.watres.2020.115489.
    Kelly, V.J., 2010. Influence of reservoirs on solute transport: A regional-scale approach. Hydrol. Process. 15(7), 1227-1249. https://doi.org/10.1002/hyp.211.
    Khadka, U.R., Ramanathan, A.L., 2013. Major ion composition and seasonal variation in the Lesser Himalayan Lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arab. J. Geosci. 6(11), 4191-4206. https://doi.org/10.1007/s12517-012-0677-4.
    Li, D.F., Lu, X.X., Yang, X.K., Chen, L., Lin, L., 2018. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology. 322, 41-52. https://doi.org/10.1016/j.geomorph.2018.08.038. doi: 10.1117/12.2289024
    Li, K.F., Zhu, C., Wu, L., Huang, L.Y., 2013. Problems caused by the Three Gorges Dam construction in the Yangtze River Basin: A review. Environ. Rev. 21(3), 127-135. https://doi.org/10.1139/er-2012-0051.
    Martin, J.M., Meybeck, M., 1979. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 7(3), 173-206. https://doi.org/10.1016/0304-4203(79)90039-2.
    Meybeck, M., 2003. Global occurrence of major elements in rivers. Treatise Geochem. 5(1), 207-223. https://doi.org/10.1016/B0-08-043751-6/05164-1.
    Meybeck, M., Ragu, A., 2012. GEMS-GLORI world river discharge database. Laboratoire de Geologie Appliquee, Universite Pierre et Marie Curie, Paris. https://doi.org/10.1594/PANGAEA.804574.
    Pant, R.R., Zhang, F., Rehman, F.U., Wang, G.X., Ye, M., Zeng, C., Tang, H.D., 2018. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 622, 770-782. https://doi.org/10.1016/j.scitotenv.2017.12.063.
    Piper, A.M., 1944. A graphic procedure in the geochemical interpretation of water analysis. Eos, Trans. Am. Geophys. Union 25(6), 914-928. https://doi.org/10.1029/TR025i006p00914.
    Qu, B., Sillanpaa, M., Zhang, Y.L., Guo, J.M., Wahed, M.S.M.A., Kang, S.C., 2015. Water chemistry of the headwaters of the Yangtze River. Environ. Earth Sci. 74(8), 6443-6458. https://doi.org/10.1007/s12665-015-4174-4.
    Qu, B., Zhang, Y.L., Kang, S.C., Sillanpaa, M., 2017. Water chemistry of the southern Tibetan Plateau: An assessment of the Yarlung Tsangpo River Basin. Environ. Earth Sci. 76(2), 74. https://doi.org/10.1007/s12665-017-6393-3. doi: 10.3390/w9020074
    Qu, B., Zhang, Y.L., Kang, S.C., Sillanpaa, M., 2019. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the "Water Tower of Asia". Sci. Total Environ. 649, 571-581. https://doi.org/10.1016/j.scitotenv.2018.08.316.
    Shi, W., Chen, Q., Yi, Q., Yu, J., Ji, Y., Hu, L., Chen, Y., 2017. Carbon emission from cascade reservoirs: Spatial heterogeneity and mechanisms. Environ. Sci. Technol. 51(21), 12175-12181. https://doi.org/10.1021/acs.est.7b03590.
    Singh, V.B., Ramanathan, A.L., Pottakkal, J.G., Kumar, M., 2014. Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. J. Asian Earth Sci. 79(2), 224-234. https://doi.org/10.1016/j.jseaes.2013.09.010.
    Stallard, R.F., Edmond, J.M., 1987. Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. J. Geophys. Res. Oceans 92(C8), 8293-8302. https://doi.org/10.1029/JC092iC08p08293.
    Thomas, J., Joseph, S., Thrivikramji, K.P., Manjusree, T.M., Arunkumar, K.S., 2014. Seasonal variation in major ion chemistry of a tropical mountain river, the Southern Western Ghats, Kerala, India. Environ. Earth Sci. 71(5), 2333-2351. https://doi.org/10.1007/s12665-013-2634-2.
    Viers, J., Dupre, B., Gaillardet, J., 2009. Chemical composition of suspended sediments in world rivers: New insights from a new database. Sci. Total Environ. 407(2), 853-868. https://doi.org/10.1016/j.scitotenv.2008.09.053.
    Wang, X., Yang, S., Ran, X., Liu, X.M., Bataille, C.P., Ni, S., 2018. Response of the Changjiang (Yangtze River) water chemistry to the impoundment of Three Gorges Dam during 2010-2011. Chem. Geol. 487, 1-11. https://doi.org/10.1016/j.chemgeo.2018.04.006. doi: 10.1145/3225058.3225071
    Winemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I.G., Darwall, W., Lujan, N.K., Harrison, I., et al., 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science. 351(6269), 128-129. https://doi.org/10.1126/science.aac7082.
    World Health Organization (WHO), 2011. Guidelines for Drinking-Water Quality. Recommendations, Vision 4. https://www.who.int/publications/i/item/9789241548151. [Retrieved June 27, 2011].
    Wu, W.H., Yang, J.D., Xu, S.J., Yin, H.W., 2008. Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: Silicate weathering and CO2 consumption. Appl. Geochem. 23(12), 3712-3727. https://doi.org/10.1016/j.apgeochem.2008.09.005.
    Yuan, Q.S., Wang, P.F., Wang, C., Chen, J., Wang, X., Liu, S., Feng, T., 2019. Metals and metalloids distribution, source identification, and ecological risks in riverbed sediments of the Jinsha River, China. J. Geochem. Explor. 205, 106334. https://doi.org/10.1016/j.gexplo.2019.106334.
    Yuan, Q.S., Wang, P.F., Wang, C., Chen, J., Wang, X., Liu, S., 2021. Indicator species and co-occurrence pattern of sediment bacterial community in relation to alkaline copper mine drainage contamination. Ecol. Indicat. 120, 106884. https://doi.org/10.1016/j.ecolind.2020.106884.
    Zhang, J., Huang, W.W., Letolle, R., Jusserand, C., 1995. Major element chemistry of the Huanghe (Yellow River), China- weathering processes and chemical fluxes. J. Hydrol. 168(1-4), 173-203. https://doi.org/10.1016/0022-1694(94)02635-O.
    Zhang, L.L., Zhao, Z.Q., Zhang, W., Tao, Z.H., Huang, L., Yang, J.X., Wu, Q.X., Liu, C.Q., 2016. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environ. Earth Sci. 75(6), 506. https://doi.org/10.1007/s12665-015-5115-y.
    Zhang, Z.J., Liu, S.Q., Cheng, B.X., Fan, Y., Li, Y., 2006. Characteristics of land resources and characteristic ecological agricultural construction of dry-hot valley along Jinsha River. J. Sichuan Agric. Univ. 24(1), 77-82 (in Chinese). https://doi.org/10.1016/S1872-2032(06)60050-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (503) PDF downloads(233) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return