Volume 15 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
Zeng Zhou, Meng-jiao Liang, Lei Chen, Meng-piao Xu, Xue Chen, Liang Geng, Huan Li, Daniel Serrano, He-yue Zhang, Zheng Gong, Chang-kuan Zhang. 2022: Processes, feedbacks, and morphodynamic evolution of tidal flatemarsh systems:Progress and challenges. Water Science and Engineering, 15(2): 89-102. doi: 10.1016/j.wse.2021.07.002
Citation: Zeng Zhou, Meng-jiao Liang, Lei Chen, Meng-piao Xu, Xue Chen, Liang Geng, Huan Li, Daniel Serrano, He-yue Zhang, Zheng Gong, Chang-kuan Zhang. 2022: Processes, feedbacks, and morphodynamic evolution of tidal flatemarsh systems:Progress and challenges. Water Science and Engineering, 15(2): 89-102. doi: 10.1016/j.wse.2021.07.002

Processes, feedbacks, and morphodynamic evolution of tidal flatemarsh systems:Progress and challenges

doi: 10.1016/j.wse.2021.07.002
  • Received Date: 2021-01-31
  • Accepted Date: 2021-07-20
  • Rev Recd Date: 2021-07-20
  • Available Online: 2022-06-21
  • Tidal flats and saltmarshes have been a long-standing research focus because of their high socio-economic and ecological values. The evolution of tidal flatemarsh systems is highly complex due to the intertwined processes operating over a variety of spatial and temporal scales. As a traditional research highlight, the role of regular hydrodynamic processes such as tides, waves, and river flows have been explored comprehensively with fruitful outcomes. Over past decades, the changing environment (e.g., sea level rise, increasing anthropogenic activities, and extreme weather conditions) has attracted more attention with many reported insightful results. More recent advances indicate that biological activities play a critical role in tidal flatemarsh morphodynamics but are still poorly understood. The field of research that connects the biological and physical processes is commonly described as "biogeomorphology" and requires the joint efforts by scientists from multiple disciplines ranging from hydraulics, ecology, and geography to sociology. This review aims to provide a synthesis of the current research status of tidal flatemarsh morphodynamics, with a particular emphasis on the understanding of various processes and feedbacks underlying the development of morphodynamic models. Some future research needs and challenges are identified to facilitate a more sustainable management strategy for tidal flats and saltmarshes under climate change.

     

  • loading
  • Allen, J., 1989. Evolution of salt-marsh cliffs in muddy and sandy systems:A qualitative comparison of British west-coast estuaries. Earth Surf.Process. Landforms 14(1), 85-92. https://doi.org/10.1002/esp.32901 40108.
    Allen, J., 2000. Morphodynamics of holocene salt marshes:A review sketch from the atlantic and southern north sea coasts of Europe. Quat. Sci. Rev. 19(12), 1155-1231. https://doi.org/10.1016/S0277-3791(99)00034-7.
    Amos, C.L., 1995. Chapter 10 siliciclastic tidal flats. In:Perillo, G.M.E. (Ed.), Gemorphology and Sedimentology of Estuaries. Elsevier, Amsterdam, pp. 273-306. https://doi.org/10.1016/S0070-4571(05)80030-5.
    Bartholdy, J., Aagaard, T., 2001. Storm surge effects on a back-barrier tidal flat of the Danish Wadden Sea. Geo-Mar. Lett. 20(3), 133-141. https://doi.org/ 10.1007/s003670000048.
    Bartholdy, J., Christiansen, C., Kunzendorf, H., 2004. Long term variations in backbarrier salt marsh deposition on the Skallingen peninsula e the Danish Wadden Sea. Mar. Geol. 203(1-2), 1-21. https://doi.org/10.1016/S0025-3227(03)00337-2.
    Belliard, J.P., Toffolon, M., Carniello, L., D'Alpaos, A., 2015. An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. J. Geophys. Res. Earth Surf. 120(6), 1040-1064. https://doi.org/10.1002/2015JF003445.
    Bendoni, M., Mel, R., Solari, L., Lanzoni, S., Francalanci, S., Oumeraci, H., 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resour. Res. 52(2), 1446-1464. https://doi.org/ 10.1002/2015WR017966.
    Bertness, M.D., Holdredge, C., Altieri, A.H., 2009. Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England.Ecology 90(8), 2108-2117. https://doi.org/10.1890/08-1396.1.
    Botto, F., Iribarne, O., 2000. Contrasting effects of two burrowing crabs(Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Estuar. Coast. Shelf Sci. 51(2), 141-151. https://doi.org/10.1006/ecss.2000.0642.
    Bouma, T.J., van Belzen, J., Balke, T., van Dalen, J., Klaassen, P., Hartog, A.M., Callaghan, D.P., Hu, Z., Stive, M.J.F., Temmerman, S., et al., 2016. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnol. Oceanogr. 61(6), 2261-2275. https://doi.org/10.1002/
    Brown, A.G., Tooth, S., Bullard, J.E., Thomas, D.S.G., Chiverrell, R.C., Plater, A.J., Murton, J., Thorndycraft, V.R., Tarolli, P., Rose, J., et al., 2016. The geomorphology of the Anthropocene:Emergence, status and implications. Earth Surf. Process. Landforms 42(1), 71-90. https://doi.org/ 10.1002/esp.3943.
    Cahoon, D.R., Lynch, J.C., Perez, B.C., Segura, B., Holland, R.D., Stelly, C., Stephenson, G., Hensel, P., 2002. High-precision measurements of wetland sediment elevation:II. The rod surface elevation table. J. Sediment. Res. 72(5), 734-739. https://doi.org/10.1306/020702720734.
    Chen, L., Zhou, Z., Xu, M., Xu, F., Tao, J., Zhang, C., 2018. Exploring the influence of land reclamation on sediment grain size distribution on tidal flats:A numerical study. Coast. Eng. Proc. 1(36), 85. https://doi.org/ 10.9753/icce.v36.papers.85.
    Chen, L., Zhou, Z., Xu, F., Jimenez, M., Tao, J., Zhang, C., 2020a. Simulating the impacts of land reclamation and de-reclamation on the morphodynamics of tidal networks. Anthropocene Coast. 3(1), 30-42. https://doi.org/10.1139/anc-2019-0010.
    Chen, L., Zhou, Z., Xu, F., M€ oller, I., Zhang, C., 2020b. Field observation of saltmarsh-edge morphology and associated vegetation characteristics in an open-coast tidal flat. J. Coast. Res. 95(SI), 412-416. https://doi.org/ 10.2112/SI95-080.1.
    Chen, X., Zhang, C., Paterson, D.M., Townend, I.H., Jin, C., Zhou, Z., Gong, Z., Feng, Q., 2019. The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms:The role of'biofilm precursors'. Earth Surf. Process. Landforms 44(7), 1471-1481.https://doi.org/10.1002/esp.4573.
    Chirol, C., Haigh, I.D., Pontee, N., Thompson, C.E., Gallop, S.L., 2018.Parametrizing tidal creek morphology in mature saltmarshes using semiautomated extraction from lidar. Remote Sens. Environ. 209, 291-311.https://doi.org/10.1016/j.rse.2017.11.012.
    Choi, K.S., Park, Y.A., 2000. Late Pleistocene silty tidal rhythmites in the macrotidal flat between Youngjong and Yongyou Islands, west coast of Korea. Mar. Geol. 167(3), 231-241. https://doi.org/10.1016/S0025-3227(00) 00037-2.
    Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., Townend, I., 2013. Morphodynamics of tidal networks:Advances and challenges. Mar.Geol. 346, 1-16. https://doi.org/10.1016/j.margeo.2013.08.005.
    Coverdale, T.C., Altieri, A.H., Bertness, M.D., 2012. Belowground herbivory increases vulnerability of New England salt marshes to die-off. Ecology 93(9), 2085-2094. https://doi.org/10.2307/41739266.
    Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., Guo, H., Machmuller, M., 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7(2), 73-78.https://doi.org/10.1890/070219.
    Dai, W., Li, H., Zhou,Z.,Cybele, S.,Lu,C., Zhao, K., Zhang, X., Yang, H., Li, D., 2018. UAV photogrammetry for elevation monitoring of intertidal mudflats.J. Coast. Res. 85(sp1), 236-240. https://doi.org/10.2112/SI85-048.1.
    D'Alpaos, A., 2005. Tidal network ontogeny:Channel initiation and early development. J. Geophys. Res. 110(F2), F02001. https://doi.org/10.1029/ 2004JF000182.
    D'Alpaos, A., Lanzoni, S., Marani, M., Rinaldo, A., 2007. Landscape evolution in tidal embayments:Modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res. 112(F1), F01008. https://doi.org/10.1029/2006JF000537.
    Defina, A., Carniello, L., Fagherazzi, S., D'Alpaos, L., 2007. Self-organization of shallow basins in tidal flats and salt marshes. J. Geophys. Res. 112(F3), F03001. https://doi.org/10.1029/2006JF000550.
    Deloffre, J., Verney, R., Lafite, R., Lesueur, P., Lesourd, S., Cundy, A.B., 2007.Sedimentation on intertidal mudflats in the lower part of macrotidal estuaries:Sedimentation rhythms and their preservation. Mar. Geol. 241(1-4), 19-32. https://doi.org/10.1016/j.margeo.2007.02.011.
    Droppo, I.G., 2001. Rethinking what constitutes suspended sediment. Hydrol.Process. 15(9), 1551-1564. https://doi.org/10.1002/hyp.228.
    Escapa, M., Perillo, G.M.E., Iribarne, O., 2008. Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats.
    Estuar. Coast. Shelf Sci. 80(3), 365-373. https://doi.org/10.1016/j.ecss. 2008.08.020.
    Evans, G., 1965. Intertidal flat sediments and their environments of deposition in the Wash. Quart. J. Geol. Soc. 121(1-4), 209-240. https://doi.org/ 10.1144/gsjgs.121.1.0209.
    Fagherazzi, S., Kirwan, M.L., Mudd, S.M., Guntenspergen, G.R., Temmerman, S., D'Alpaos, A., van de Koppel, J., Rybczyk, J.M., Reyes, E., Craft, C., et al., 2012. Numerical models of salt marsh evolution:Ecological, geomorphic, and climatic factors. Rev. Geophys. 50(1), RG1002. https://doi.org/10.1029/2011RG000359.
    Fan, D., Guo, Y., Wang, P., Shi, J.Z., 2006. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China:With an emphasis on storm impacts. Continent. Shelf Res. 26(4), 517-538. https://doi.org/10.1016/j.csr.2005.12.011.
    Feagin, R.A., Lozada-Bernard, S.M., Ravens, T.M., M€ oller, I., Yeagei, K.M., Baird, A.H., Thomas, D.H., 2009. Does vegetation prevent wave erosion of salt marsh edges? Proc. Natl. Acad. Sci. Unit. States Am. 106(25), 10109-10113. https://doi.org/10.1073/pnas.0901297106.
    Finotello, A., Marani, M., Carniello, L., Pivato, M., Roner, M., Tommasini, L., D'Alpaos, A., 2020. Control of wind-wave power on morphological shape of salt marsh margins. Water Sci. Eng. 13(1), 45-56. https://doi.org/ 10.1016/j.wse.2020.03.006.
    Flemming, B.W., Nyandwi, N., 1994. Land reclamation as a cause of finegrained sediment depletion in backbarrier tidal flats (Southern North Sea). Neth. J. Aquat. Ecol. 28(3-4), 299-307. https://doi.org/10.1007/BF02334198.
    French, J.R., Spencer, T., 1993. Dynamics of sedimentation in a tidedominated backbarrier salt marsh, Norfolk, UK. Mar. Geol. 110(3-4), 315-331. https://doi.org/10.1016/0025-3227(93)90091-9.
    Friedrichs, C.T., Aubrey, D.G., 1996. Uniform bottom shear stress and equilibrium hyposometry of intertidal flats. In:Patisratchi, C. (Ed.), Mixing in Estuaries and Coastal Seas. AGU, Washington, D. C., pp. 405-429.https://doi.org/10.1029/CE050p0405.
    Friedrichs, C.T., 2011. 3.06 tidal flat morphodynamics:A synthesis. In:Wolanski, E.E., McLusky, D. (Eds.), Treatise on Estuarine and Coastal Science. Academic Press, Pittsburgh, pp. 137-170. https://doi.org/ 10.1016/B978-0-12-374711-2.00307-7.
    Ganju, N.K., Defne, Z., Kirwan, M.L., Fagherazzi, S., D'Alpaos, A., Carniello, L., 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156. https://doi.org/ 10.1038/ncomms14156.
    Gao, S., 2007. Modeling thegrowth limit of the Changjiang delta. Geomorphology 85(3-4), 225-236. https://doi.org/10.1016/j.geomorph.2006.03.021.
    Garwood, J.C., Hill, P.S., Law, B.A., 2013. Biofilms and size sorting of fine sediment during erosion in intertidal sands. Estuar. Coast. 36(5), 1024-1036. https://doi.org/10.1007/s12237-013-9618-z.
    Geng, L., Gong, Z., Zhou, Z., Lanzoni, S., D'Alpaos, A., 2020. Assessing the relative contributions of the flood tide and the ebb tide to tidal channel network dynamics. Earth Surf. Process. Landforms 45(1), 237-250.https://doi.org/10.1002/esp.4727.
    Gerbersdorf, S.U., Wieprecht, S., 2015. Biostabilization of cohesive sediments:Revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13(1), 68-97. https://doi.org/10.1111/gbi.12115.
    Gillis, L.G., Snavely, E., Lovelock, C., Zimmer, M., 2019. Effects of crab burrows on sediment characteristics in a Ceriops australis-dominated mangrove forest. Estuar. Coast. Shelf Sci. 218, 334-339. https://doi.org/ 10.1016/j.ecss.2019.01.008.
    Goldstein, E.B., Coco, G., Murray, A.B., Green, M.O., 2014. Data-driven components in a model of inner-shelf sorted bedforms:A new hybrid model. Earth Surf. Dyn. 2(1), 67-82. https://doi.org/10.5194/esurf-2-67-2014.
    Gong, Z., Jin, C., Zhang, C., Zhou, Z., Zhang, Q., Li, H., 2017. Temporal and spatial morphological variations along a cross-shore intertidal profile, Jiangsu, China. Continent. Shelf Res. 144, 1-9. https://doi.org/10.1016/j.csr.2017.06.009.
    Green, M.O., Coco, G., 2013. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 52(1), 77-117. https://doi.org/ 10.1002/2013RG000437.
    Hans-Erich, R., Indra, B.S., 1975. Depositional Sedimentary Environments.Springer, Berlin.
    Harvey, G.L., Henshaw, A.J., Brasington, J., England, J., 2019. Burrowing invasive species:An unquantified erosion risk at the aquatic-terrestrial interface. Rev. Geophys. 57(3), 1018-1036. https://doi.org/10.1029/ 2018RG000635.
    Hori, K., 2001. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology 41(2), 233-248.https://doi.org/10.1016/S0169-555X(01)00119-2.
    Hu, P., Cao, Z., Pender, G., Liu, H., 2014. Numerical modelling of riverbed grain size stratigraphic evolution. Int. J. Sediment Res. 29(3), 329-343.https://doi.org/10.1016/S1001-6279(14)60048-2.
    Hughes, Z.J., FitzGerald, D.M., Wilson, C.A., Pennings, S.C., Więski, K., Mahadevan, A., 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophys. Res. Lett. 36(3), L03602. https://doi.org/10.1029/2008GL036000.
    Iwasaki, T., Shimizu, Y., Kimura, I., 2013. Modelling of the initiation and development of tidal creek networks. Proc. Inst. Civil Eng. Maritime Eng. 166(2), 76-88. https://doi.org/10.1680/maen.2012.12.
    Jankowski, K.L., T€ ornqvist, T.E., Fernandes, A.M., 2017. Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise.Nat. Commun. 8(1), 14792. https://doi.org/10.1038/ncomms14792.
    Janssen-Stelder, B., 2000. The effect of different hydrodynamic conditions on the morphodynamics of a tidal mudflat in the Dutch Wadden Sea. Continent. Shelf Res. 20(12-13), 1461-1478. https://doi.org/10.1016/S0278-4343(00)00032-7.
    Jobson, H.E., 1982. Evaporation into the atmosphere:Theory, history, and applications. Eos Trans. AGU 65(51), 1223-1224. https://doi.org/10.1029/EO063i051p01223-04.
    Kirby, R., 2000. Practical implications of tidal flat shape. Continent. Shelf Res. 20(10-11), 1061-1077. https://doi.org/10.1016/S0278-4343(00)00012-1.
    Kirwan, M., Temmerman, S., 2009. Coastal marsh response to historical and future sea-level acceleration. Quat. Sci. Rev. 28(17), 1801-1808. https://doi.org/10.1016/j.quascirev.2009.02.022.
    Kirwan, M.L., Murray, A.B., 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proc. Natl. Acad. Sci. U.S.A. 104(15), 6118-6122. https://doi.org/10.1073/pnas.0700958104.
    Kirwan, M.L., Megonigal, J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504(7478), 53-60. https://doi.org/10.1038/nature12856.
    Klein, G.D., 1985. Intertidal flats and intertidal sand bodies. In:Davis, R.A.(Ed.), Coastal Sedimentary Environments. Springer, New York, pp. 187-224. https://doi.org/10.1007/978-1-4612-5078-4_3.
    Kleinhans, M.G., van der Vegt, M., van Scheltinga, R.T., Baar, A.W., Markies, H., 2012. Turning the tide:Experimental creation of tidal channel networks and ebb deltas. Neth. J. Geosci. 91(3), 311-323. https://doi.org/ 10.1017/S0016774600000469.
    Le Hir, P., Monbet, Y., Orvain, F., 2007. Sediment erodability in sediment transport modelling:Can we account for biota effects? Continent. Shelf Res. 27(8), 1116-1142. https://doi.org/10.1016/j.csr.2005.11.016.Leonard, L.A., Croft, A.L., 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar. Coast.Shelf Sci. 69(3-4), 325-336. https://doi.org/10.1016/j.ecss.2006.05.004.
    Leonardi, N., Ganju, N.K., Fagherazzi, S., 2016. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Natl. Acad. Sci. Unit. States Am. 113(1), 64-68.https://doi.org/10.1073/pnas.1510095112.
    Leonardi, N., Carnacina, I., Donatelli, C., Ganju, N.K., Plater, A.J., Schuerch, M., Temmerman, S., 2018. Dynamic interactions between coastal storms and salt marshes:A review. Geomorphology 301, 92-107. https://doi.org/10.1016/j.geomorph.2017.11.001.
    Li, H., Li, L., Lockington, D., 2005. Aeration for plant root respiration in a tidal marsh. Water Resour. Res. 41(6), W06023. https://doi.org/10.1029/ 2004WR003759.
    Li, H., Yang, S.L., 2009. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. J. Coast. Res. 25(4), 915-924. https://doi.org/10.2112/08-1010.1.
    Li, R., Yu, Q., Wang, Y., Wang, Z.B., Gao, S., Flemming, B., 2018a. The relationship between inundation duration and Spartina alterniflora growth along the Jiangsu coast, China. Estuar. Coast. Shelf Sci. 213, 305-313.
    https://doi.org/10.1016/j.ecss.2018.08.027.
    Li, X., Bellerby, R., Craft, C., Widney, S.E., 2018b. Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coast. 1(1), 1-15. https://doi.org/10.1139/anc-2017-0001.
    Lin, J., 1989. Importance of location in the salt marsh and clump size on growth of ribbed mussels. J. Exp. Mar. Biol. Ecol. 128(1),75-86. https://doi.org/10.1016/0022-0981(89)90093-2.
    Liu, Y., Li, M., Cheng, L., Li, F., Chen, K., 2012. Topographic mapping of offshore sandbank tidal flats using the waterline detection method:A case study on the Dongsha sandbank of Jiangsu radial tidal sand ridges, China.
    Mar. Geodes. 35(4), 362-378. https://doi.org/10.1080/01490419.2012. 699501.
    Maan, D.C., Prooijen, B.C., Wang, Z.B., De Vriend, H.J., 2015. Do intertidal flats ever reach equilibrium? J. Geophys. Res. Earth Surf. 120(11), 2406-2436. https://doi.org/10.1002/2014JF003311.
    Mariotti, G., Fagherazzi, S., 2010. A numerical model for the coupled longterm evolution of salt marshes and tidal flats. J. Geophys. Res. 115(F1), F01004. https://doi.org/10.1029/2009JF001326.
    Mariotti, G., Fagherazzi, S., 2012. Modeling the effect of tides and waves on benthic biofilms. J. Geophys. Res. Biogeosci. 117(G4), G04010. https://doi.org/10.1029/2012JG002064.
    Moffett, K., Nardin, W., Silvestri, S., Wang, C., Temmerman, S., 2015. Multiple stable states and catastrophic shifts in coastal wetlands:Progress, challenges, and opportunities in validating theory using remote sensing and other methods. Rem. Sens. 7(8), 10184-10226. https://doi.org/10.3390/rs70810184.
    Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., MirandaLange, M., et al., 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7, 727-731. https://doi.org/10.1038/ngeo2251.
    Morris, J.T., 1995. The mass balance of salt and water in intertidal sediments:Results from North Inlet, South Carolina. Estuaries 18(4), 556-567.https://doi.org/10.2307/1352376.
    Mudd, S.M., D'Alpaos, A., Morris, J.T., 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys.Res. 115(F3), F03029. https://doi.org/10.1029/2009JF001566.
    Murray, N.J., Phinn, S.R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M.B., Clinton, N., Thau, D., Fuller, R.A., 2019. The global distribution and trajectory of tidal flats. Nature 565(7738), 222-225. https://doi.org/10.1038/s41586-018-0805-8.
    Oki, T., Kanae, S., 2006. Global hydrological cycles and world water resources.
    Science 313(5790), 1068. https://doi.org/10.1126/science.1128845.
    Paarlberg, A.J., Knaapen, M., de Vries, M.B., Hulscher, S., Wang, Z.B., 2005.Biological influences on morphology and bed composition of an intertidal flat. Estuar. Coast. Shelf Sci. 64(4), 577-590. https://doi.org/10.1016/j.ecss.2005.04.008.
    Parsons, D.R., Schindler, R.J., Hope, J.A., Malarkey, J., Baas, J.H., Peakall, J., Manning, A.J., Ye, L., Simmons, S., Paterson, D.M., et al., 2016. The role of biophysical cohesion on subaqueous bed form size. Geophys. Res. Lett. 43(4), 1566-1573. https://doi.org/10.1002/2016GL067667.
    Perillo, G.M.E., Minkoff, D.R., Piccolo, M.C., 2005. Novel mechanism of stream formation in coastal wetlands by crabefishegroundwater interaction. Geo-Mar. Lett. 25(4), 214-220. https://doi.org/10.1007/s00367-005-0209-2.
    Perillo, G.M.E., 2019. Chapter 6 geomorphology of tidal courses and depressions. In:Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S.(Eds.), Coastal Wetlands. Elsevier, Amsterdam, pp. 221-261. https://doi.org/10.1016/B978-0-444-63893-9.00006-X.
    Portnoy, J.W., Giblin, A.E., 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry. Biogeochemistry 36(3), 275-303. https://doi.org/10.1023/A:1005715520988.
    Postma, H., 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth. J. Sea Res. 1(1-2), 148-190. https://doi.org/ 10.1016/0077-7579(61)90004-7.
    Rahmstorf, S., 2007. A semi-empirical approach to projecting future sea-level rise. Science 315(5810), 368. https://doi.org/10.1126/science.1135456.
    Ren, M., Shi, Y., 1986. Sediment discharge of the Yellow river (China) and its effect on the sedimentation of the Bohai and the Yellow sea. Continent.Shelf Res. 6(6), 785-810. https://doi.org/10.1016/0278-4343(86)90037-3.
    Reyes, E., White, M.L., Martin, J.F., Kemp, G.P., Aravamuthan, D.V., 2000.Lands cape modeling of coastal habitat change in the Mississippi Delta.Ecology 81(8), 2331-2349. https://doi.org/10.2307/177118.
    Reynolds, O., 1889. Report of the Committee Appointed to Investigate the Action of Waves and Currents on the Beds and Foreshores of Estuaries by Means of Working Models. British Association Report, Technical Report 1. Cambridge University Press, Cambridge.
    Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., 1998. Channel networks. Annu.Rev. Earth Planet Sci. 26(1), 289-327. https://doi.org/10.1146/annurev.earth.26.1.289.
    Roberts, W., Le Hir, P., Whitehouse, R.J.S., 2000. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Continent. Shelf Res. 20(10-11), 1079-1097. https://doi.org/10.1016/S0278-4343(00)00013-3.
    Robins, P.E., Davies, A.G., 2010. Morphological controls in sandy estuaries:The influence of tidal flats and bathymetry on sediment transport. Ocean Dynam. 60(3), 503-517. https://doi.org/10.1007/s10236-010-0268-4.
    Schwarz, C., Gourgue, O., van Belzen, J., Zhu, Z., Bouma, T.J., van de Koppel, J., Ruessink, G., Claude, N., Temmerman, S., 2018. Self-organization of a biogeomorphic landscape controlled by plant life-history traits.Nat. Geosci. 11, 672-677. https://doi.org/10.1038/s41561-018-0180-y.
    Shen, C., Zhang, C., Xin, P., Kong, J., Li, L., 2018. Salt dynamics in coastal marshes:Formation of hypersaline zones. Water Resour. Res. 54(5), 3259-3276. https://doi.org/10.1029/2017WR022021.
    Shi, Z., Pethick, J.S., Burd, F., Murphy, B., 1996. Velocity profiles in a salt marsh canopy. Geo-Mar. Lett. 16(4), 319-323. https://doi.org/10.1007/BF01245563.
    Skertchly, S.B.J., 1877. The Geology of the Fenland, Memoirs of the Geological Survey of Great Britain:England and Wales. H. M. Stationery Office, London.
    Stefanon, L., Carniello, L., D Alpaos, A., Lanzoni, S., 2010. Experimental analysis of tidal network growth and development. Continent. Shelf Res. 30(8), 950-962. https://doi.org/10.1016/j.csr.2009.08.018.
    Stevens, D., Dragicevic, S., Rothley, K., 2007. iCity:A GISeCA modelling tool for urban planning and decision making. Environ. Model. Software 22(6), 761-773. https://doi.org/10.1016/j.envsoft.2006.02.004.
    Takeda, S., Kurihara, Y., 1987. The effects of burrowing of Helice tridens (De Haan) on the soil of a salt-marsh habitat. J. Exp. Mar. Biol. Ecol. 113(1), 79-89. https://doi.org/10.1016/0022-0981(87)90084-0.
    Tambroni, N., Bolla Pittaluga, M., Seminara, G., 2005. Laboratory observations of the morphodynamic evolution of tidal channels and tidal inlets. J.Geophys. Res. 110(F4), F04009. https://doi.org/10.1029/2004JF000243.
    Temmerman, S., Moonen, P., Schoelynck, J., Govers, G., Bouma, T.J., 2012.
    Impact of vegetation die-off on spatial flow patterns over a tidal marsh.Thorne, K., MacDonald, G., Guntenspergen, G., Ambrose, R., Buffington, K., Dugger, B., Freeman, C., Janousek, C., Brown, L., Rosencranz, J., et al., 2018. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4(2), eaao3270. https://doi.org/10.1126/sciadv.aao3270.
    Uehlinger, U., Buhrer, H., Reichert, P., 1996. Periphyton dynamics in a floodprone prealpineriver:Evaluationofsignificantprocessesbymodelling.Freshw.Biol. 36(2), 249-263. https://doi.org/10.1046/j.1365-2427.1996.00082.x.
    Ursino, N., Silvestri, S., Marani, M., 2004. Subsurface flow and vegetation patterns in tidal environments. Water Resour. Res. 40(5), W05115. https://doi.org/10.1029/2003WR002702.
    Van Colen, C., Underwood, G.J.C., Ser^ odio, J., Paterson, D.M., 2014. Ecology of intertidal microbial biofilms:Mechanisms, patterns and future research needs. J. Sea Res. 92, 2-5. https://doi.org/10.1016/j.seares.2014.07.003.
    van Veen, J., 1936. Onder-zoekingen in de Hoofden in verband met de gesteldheid der Nederlandse kust (Research in the Dover Straits in Relation to the Condition of the Netherlands coast). Leiden University, Leiden.
    Vignaga, E., Sloan, D.M., Luo, X., Haynes, H., Phoenix, V.R., Sloan, W.T., 2013. Erosion of biofilm-bound fluvial sediments. Nat. Geosci. 6(9), 770-774. https://doi.org/10.1038/NGEO1891.
    Vlaswinkel, B.M., Cantelli, A., 2011. Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surf. Process.Landforms 36(6), 739-752. https://doi.org/10.1002/esp.2099.
    Wang, X., Ke, X., 1997. Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China. Sediment. Geol. 112(1), 105-122. https://doi.org/10.1016/S0037-0738(97)00026-2.
    Wang, Y., 1983. The mudflat system of China. Can. J. Fish. Aquat. Sci. 40(S1), s160es171. https://doi.org/10.1139/cjfas-2016-0003.
    Wang, Y.P., Gao, S., Jia, J., Thompson, C.E.L., Gao, J., Yang, Y., 2012a.Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Mar. Geol. 291-294, 147-161. https://doi.org/10.1016/j.margeo.2011.01.004.
    Wang, Z., Li, Y., He, Y., 2007. Sediment budget of the Yangtze River. Water Resour. Res. 43(4), W04401. https://doi.org/10.1029/2006WR005012.
    Wang, Z.B., Hoekstra, P., Burchard, H., Ridderinkhof, H., De Swart, H.E., Stive, M.J.F., 2012b. Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast. Manag. 68, 39-57. https://doi.org/10.1016/j.ocecoaman.2011.12.022.
    Widdows, J., Brinsley, M., 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J. Sea Res. 48(2), 143-156. https://doi.org/10.1016/S1385-1101(02)00148-X.
    Wilson, C.A., Hughes, Z.J., FitzGerald, D.M., 2012. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension:Geotechnical and geochemical changes. Estuar. Coast. Shelf Sci. 106, 33-44. https://doi.org/10.1016/j.ecss.2012.04.019.
    Wu, W., Yang, Z., Tian, B., Huang, Y., Zhou, Y., Zhang, T., 2018. Impacts of coastal reclamation on wetlands:Loss, resilience, and sustainable management. Estuar. Coast. Shelf Sci. 210, 153-161. https://doi.org/10.1016/j.ecss.2018.06.013.
    Xie, W., He, Q., Zhang, K., Guo, L., Wang, X., Shen, J., Cui, Z., 2017.Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale. Geomorphology 292, 47-58. https://doi.org/ 10.1016/j.geomorph.2017.04.034.
    Xin, P., Zhou, T., Lu, C., Shen, C., Zhang, C., D'Alpaos, A., Li, L., 2017.Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creekemarsh system. Adv. Water Resour. 103, 1-15. https://doi.org/10.1016/j.advwatres.2017.02.014.
    Yang, B.C., Dalrymple, R.W., Chun, S.S., 2005. Sedimentation on a wavedominated, open-coast tidal flat, south-western Korea:Summer tidal flatwinter shoreface. Sedimentology 52(2), 235-252. https://doi.org/ 10.1111/j.1365-3091.2004.00692.x.
    Yang, S., Ding, P.X., Chen, S.L., 2001. Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China. Geomorphology 38(1-2), 167-180. https://doi.org/10.1016/S0169-555X(00) 00079-9.
    Yang, S., Friedrichs, C.T., Shi, Z., Ding, P., Zhu, J., Zhao, Q., 2003.Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm. Estuaries 26(6), 1416-1425.https://doi.org/10.1007/BF02803650.
    Yapp, R.H., Johns, D., Jones, O.T., 1917. The salt marshes of the Dovey Estuary. J. Ecol. 5(2), 65-103. https://doi.org/10.2307/2255644.
    Yu, Q., Wang, Y., Flemming, B., Gao, S., 2012. Modelling the equilibrium hypsometry of back-barrier tidal flats in the German Wadden Sea (southern North Sea). Continent. Shelf Res. 49, 90-99. https://doi.org/10.1016/j.csr.2011.05.011.
    Zhao, Y., Yu, Q., Wang, D., Wang, Y.P., Wang, Y., Gao, S., 2017. Rapid formation of marsh-edge cliffs, Jiangsu coast, China. Mar. Geol. 385, 260-273. https://doi.org/10.1016/j.margeo.2017.02.001.
    Zhou, Z., Coco, G., Jim enez, M., Olabarrieta, M., van der Wegen, M., Townend, I., 2014. Morphodynamics of river-influenced back-barrier tidal basins:The role of landscape and hydrodynamic settings. Water Resour.Res. 50(12), 9514-9535. https://doi.org/10.1002/2014WR015891.
    Zhou, Z., Coco, G., van der Wegen, M., Gong, Z., Zhang, C., Townend, I., 2015. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves.Continent. Shelf Res. 104, 76-91. https://doi.org/10.1016/j.csr.2015. 05.010.
    Zhou, Z., Ye, Q., Coco, G., 2016. A one-dimensional biomorphodynamic model of tidal flats:Sediment sorting, marsh distribution, and carbon accumulation under sea level rise. Adv. Water Resour. 93, 288-302.https://doi.org/10.1016/j.advwatres.2015.10.011.
    Zhou, Z., Coco, G., Townend, I., Olabarrieta, M., van der Wegen, M., Gong, Z., D Alpaos, A., Gao, S., Jaffe, B.E., Gelfenbaum, G., et al., 2017.Is "morphodynamic equilibrium" an oxymoron? Earth Sci. Rev. 165, 257-267. https://doi.org/10.1016/j.earscirev.2016.12.002.
    Zhou, Z., Chen, L., Tao, J., Gong, Z., Guo, L., Wegen, M., Townend, I., Zhang, C., 2020. The role of salinity in fluvio-deltaic morphodynamics:A long-term modelling study. Earth Surf. Process. Landforms 45(3), 590-604. https://doi.org/10.1002/esp.4757.
    Zhou, Z., Liu, Q., Fan, D., Coco, G., Gong, Z., Möller, I., Xu, F., Townend, I., Zhang, C., 2021. Simulating the role of tides and sediment characteristics on tidal flat sorting and bedding dynamics. Earth Surf. Process. Landforms 1-14. https://doi.org/10.1002/esp.5166.
    Zhu, Q., van Prooijen, B.C., Maan, D.C., Wang, Z.B., Yao, P., Daggers, T., Yang, S.L., 2019. The heterogeneity of mudflat erodibility. Geomorphology 345, 106834. https://doi.org/10.1016/j.geomorph.2019.106834.Geophys. Res. Lett. 39(3), 3406. https://doi.org/10.1029/2011GL050502.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (406) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return