Volume 14 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Pongthipun Phuengphai, Thapanee Singjanusong, Napaporn Kheangkhun, Amnuay Wattanakornsiri. 2021: Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Science and Engineering, 14(4): 286-294. doi: 10.1016/j.wse.2021.08.003
Citation: Pongthipun Phuengphai, Thapanee Singjanusong, Napaporn Kheangkhun, Amnuay Wattanakornsiri. 2021: Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Science and Engineering, 14(4): 286-294. doi: 10.1016/j.wse.2021.08.003

Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents

doi: 10.1016/j.wse.2021.08.003
Funds:

This work was supported by the project funded by the Research and Development Institute, Surindra Rajabhat University, Thailand.

  • Received Date: 2021-01-13
  • Accepted Date: 2021-04-12
  • Available Online: 2021-12-15
  • Fruit peels, which are common agricultural byproducts, have been extensively used as abandoned or low-cost biosorbents to remove heavy metals. In this study, dragon fruit peel (DFP), rambutan peel (RP), and passion fruit peel (PFP) were used to remove Cu(II) ions from an aqueous solution. Concentrations of the adsorbed metal ions were determined using the atomic absorption spectroscopic method. Adsorption experiments were performed with different adsorbent dosages, pH values, contact times, and initial copper concentrations. The optimum set of conditions for biosorption of Cu(II) ions was found to be an adsorbent dosage of 0.25 g, a contact time of 180 min, an initial concentration of 100 mg/L, a pH value of 4 for RP and PFP, and a pH value of 5 for DFP. The adsorption conformed with the pseudo-second-order kinetic model. The adsorption data were consistent with the Langmuir and Freundlich isotherm models, but the best fit was with the Langmuir model. The Langmuir monolayer adsorption capacity values of DFP, RP, and PFP were calculated to be 92.593, 192.308, and 121.951 mg/g, respectively. RP showed a higher adsorption capacity of Cu(II) ions than PFP and DFP for all parameters. The results indicate that these biosorbents might be used to effectively adsorb Cu(II) ions from wastewater treatment plants.

     

  • loading
  • Abdelhafez, A.A., Li, J., 2016. Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J. Taiwan Inst. Chem. Eng. 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005.
    Altameemi, I.A., Ma, T., Nasser, T., 2013. A new simple method for the treatment of waste water containing Cu(II), Zn(II) ions using adsorption on dried conocarpus erectus leaves. J. Basrah Res. (Sci.) 39(2A), 125-136.
    Annadurai, G., Juang, R.S., Lee, D., 2003. Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 47(1), 185-190.
    Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A., 2017. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J. Clean. Prod. 142, 3809-3821. https://doi.org/10.1016/j.jclepro.2016.10.081.
    Benguella, B., Benaissa, H., 2002. Cadmium removal from aqueous solutions by chitin: Kinetic and equilibrium studies. Water Res. 36(10), 2463-2474.
    Chaiyaraksa, C., Jaipong, T., Tamnao, P., Imjai, A., 2017. Durian and mangosteen shell-derived biochar amendment on the removal of zinc, lead and cadmium. Sci. Technol. Asia 22(1), 87-97.
    Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., Huang, Z., 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 26, 289-300. https://doi.org/10.1016/j.jwpe.2018.11.003.
    Guyo, U., Mhonyera, J., Moyo, M., 2015. Pb(II) adsorption from aqueous solutions by raw and treated biomass of maize stover: A comparative study. Process Saf. Environ. Protect. 93, 192-200. https://doi.org/10.1016/j.psep.2014.06.009.
    Jones, B.O., John, O.O., Luke, C., Ochieng, A., Bassey, B.J., 2016. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. J. Environ. Manag. 177, 365-372. https://doi.org/10.1016/j.jenvman.2016.04.011.
    Keawkim, K., Khamthip, A., 2018. Removal of Pb2+ ion from industrial wastewater by new efficient biosorbents of Oyster plant (Tradescantia spathacea Steam) and Negkassar leaf (Mammea siamensis T. Anderson). Chiang Mai J. Sci. 45(1), 369-379.
    Liu, H., Chang, L., Liu, W., Xiong, Z., Zhao, Y., Zhang, J., 2020. Advances in mercury removal from coal-fired flue gas by mineral adsorbents. Chem. Eng. J. 379, 122263. https://doi.org/10.1016/j.cej.2019.122263.
    Moyo, M., Chikazaza, L., Nyamunda, B.C., Guyo, U., 2013. Adsorption batch studies on the removal of Pb(II) using maize tassel based activated carbon. J. Chem. 508934. https://doi.org/10.1155/2013/508934.
    Ngabura, M., Hussain, S.A., Ghani, W.A.W.A., Jami, M.S., Tan, Y.P., 2018. Utilization of renewable durian peels for biosorption of zinc from wastewater. J. Environ. Chem. Eng. 6(2), 2528-2539. https://doi.org/10.1016/j.jece.2018.03.052.
    Okafor, P.C., Okon, P.U., Daniel, E.F., Ebenso, E.E., 2012. Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. Int. J. Electrochem. Sci. 7, 12354-12369. https://doi.org/10.1007/s12678-012-0090-5.
    Petrović, M., Šoštarić, T., Stojanović, M., Milojković, J., Mihajlović, M., Stanojević, M., Stanković, S., 2016. Removal of Pb2+ ions by raw corn silk(Zea mays L.) as a novel biosorbent. J. Taiwan Inst. Chem. Eng. 58, 407-416. https://doi.org/10.1016/j.jtice.2015.06.025.
    Raju, D., Kiran, G.R., Rao, D.V., 2013. Comparison studies on biosorption of lead(II) from an aqueous solution using anacardium occidentale and carica papaya leaves powder. J. Emerg. Trends Eng. Dev. 3, 273-283.
    Rezania, S., Taib, S.M., Din, M.F.M., Dahalan, F.A., Kamyab, H., 2016. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard Mater. 318, 587-599. https://doi.org/10.1016/j.jhazmar.2016.07.053.
    Romero-Cano, L.A., García-Rosero, H., Gonzalez-Gutierrez, L.V., Baldenegro-Pérez, L.A., Carrasco-Marín, F., 2017. Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. J. Clean. Prod. 162, 195-204. https://doi.org/10.1016/j.jclepro.2017.06.032.
    Safari, E., Rahemi, N., Kahforoushan, D., Allahyari, S., 2019. Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized by combustion method using response surface methodology. J. Environ. Chem. Eng. 7(1), 102847. https://doi.org/10.1016/j.jece.2018.102847.
    Semerciöz, A.S., Göğüş, F., Çelekli, A., Bozkurt, H., 2017. Development of carbonaceous material from grapefruit peel with microwave implementedlow temperature hydrothermal carbonization technique for the adsorption of Cu(II). J. Clean. Prod. 165, 599-610. https://doi.org/10.1016/j.jclepro.2017.07.159.
    Singh, J., Ali, A., Kumar, R., 2013. Removal of Ni2+, Cu2+ and Zn2+ using different agricultural residues: Kinetics, isotherm modeling and mechanism via chemical blocking. Asian J. Chem. 25(12), 6377-6386. https://doi.org/10.14233/ajchem.2013.14651.
    Srinivasa, J.R., Kesava, R.C., Prabhakar, G., 2013. Optimization of biosorption performance of Casuarina leaf powder for the removal of lead using central composite design. J. Environ. Anal. Toxicol. 3(2), 1000166. https://doi.org/10.4172/2161-0525.1000166.
    Sun, H., Xia, N., Liu, Z., Kong, F., Wang, S., 2019. Removal of copper and cadmium ions from alkaline solutions using chitosan-tannin functional paper materials as adsorbent. Chemosphere 236, 124370. https://doi.org/10.1016/j.chemosphere.2019.124370.
    Tasaso, P., 2014. Adsorption of copper using pomelo peel and depectinated pomelo peel. J. Clean Energy Technol. 2(2), 154-157. https://doi.org/10.7763/JOCET.2014.V2.112.
    Villen-Guzman, M., Gutierrez-Pinilla, D., Gomez-Lahoz, C., VeredaAlonso, C., Rodriguez-Maroto, J.M., Arhoun, B., 2019. Optimization of Ni(II) biosorption from aqueous solution on modified lemon peel. Environ. Res. 179, 108849. https://doi.org/10.1016/j.envres.2019.108849.
    Wu, H., Wang, W., Huang, Y., Han, G., Yang, S., Su, S., Sana, H., Peng, W., Cao, Y., Liu, J., 2019. Comprehensive evaluation on a prospective precipitationflotation process for metal-ions removal from wastewater simulants. J. Hazard Mater. 371, 592-602. https://doi.org/10.1016/j.jhazmat.2019.03.048.
    Yesil, H., Tugtas, A.E., 2019. Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Sci. Total Environ. 693, 133608. https://doi.org/10.1016/j.scitotenv.2019.133608.
    Yupadee, S., 2004. Removal of cadmium(II) and lead(II) ions from wastewater by tamarind and pomegranate shell. J. Sci. Technol. 22(2), 184-201.
    Zhang, W., Song, J., He, Q., Wang, H., Lyu, W., Feng, H., Xiong, W., Guo, W., Wu, J., Chen, L., 2020. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J. Hazard Mater. 384, 121445. https://doi.org/10.1016/j.jhazmat.2019.121445.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (808) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return