Citation: | Pongthipun Phuengphai, Thapanee Singjanusong, Napaporn Kheangkhun, Amnuay Wattanakornsiri. 2021: Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Science and Engineering, 14(4): 286-294. doi: 10.1016/j.wse.2021.08.003 |
Abdelhafez, A.A., Li, J., 2016. Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J. Taiwan Inst. Chem. Eng. 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005.
|
Altameemi, I.A., Ma, T., Nasser, T., 2013. A new simple method for the treatment of waste water containing Cu(II), Zn(II) ions using adsorption on dried conocarpus erectus leaves. J. Basrah Res. (Sci.) 39(2A), 125-136.
|
Annadurai, G., Juang, R.S., Lee, D., 2003. Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 47(1), 185-190.
|
Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A., 2017. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J. Clean. Prod. 142, 3809-3821. https://doi.org/10.1016/j.jclepro.2016.10.081.
|
Benguella, B., Benaissa, H., 2002. Cadmium removal from aqueous solutions by chitin: Kinetic and equilibrium studies. Water Res. 36(10), 2463-2474.
|
Chaiyaraksa, C., Jaipong, T., Tamnao, P., Imjai, A., 2017. Durian and mangosteen shell-derived biochar amendment on the removal of zinc, lead and cadmium. Sci. Technol. Asia 22(1), 87-97.
|
Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., Huang, Z., 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 26, 289-300. https://doi.org/10.1016/j.jwpe.2018.11.003.
|
Guyo, U., Mhonyera, J., Moyo, M., 2015. Pb(II) adsorption from aqueous solutions by raw and treated biomass of maize stover: A comparative study. Process Saf. Environ. Protect. 93, 192-200. https://doi.org/10.1016/j.psep.2014.06.009.
|
Jones, B.O., John, O.O., Luke, C., Ochieng, A., Bassey, B.J., 2016. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. J. Environ. Manag. 177, 365-372. https://doi.org/10.1016/j.jenvman.2016.04.011.
|
Keawkim, K., Khamthip, A., 2018. Removal of Pb2+ ion from industrial wastewater by new efficient biosorbents of Oyster plant (Tradescantia spathacea Steam) and Negkassar leaf (Mammea siamensis T. Anderson). Chiang Mai J. Sci. 45(1), 369-379.
|
Liu, H., Chang, L., Liu, W., Xiong, Z., Zhao, Y., Zhang, J., 2020. Advances in mercury removal from coal-fired flue gas by mineral adsorbents. Chem. Eng. J. 379, 122263. https://doi.org/10.1016/j.cej.2019.122263.
|
Moyo, M., Chikazaza, L., Nyamunda, B.C., Guyo, U., 2013. Adsorption batch studies on the removal of Pb(II) using maize tassel based activated carbon. J. Chem. 508934. https://doi.org/10.1155/2013/508934.
|
Ngabura, M., Hussain, S.A., Ghani, W.A.W.A., Jami, M.S., Tan, Y.P., 2018. Utilization of renewable durian peels for biosorption of zinc from wastewater. J. Environ. Chem. Eng. 6(2), 2528-2539. https://doi.org/10.1016/j.jece.2018.03.052.
|
Okafor, P.C., Okon, P.U., Daniel, E.F., Ebenso, E.E., 2012. Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. Int. J. Electrochem. Sci. 7, 12354-12369. https://doi.org/10.1007/s12678-012-0090-5.
|
Petrović, M., Šoštarić, T., Stojanović, M., Milojković, J., Mihajlović, M., Stanojević, M., Stanković, S., 2016. Removal of Pb2+ ions by raw corn silk(Zea mays L.) as a novel biosorbent. J. Taiwan Inst. Chem. Eng. 58, 407-416. https://doi.org/10.1016/j.jtice.2015.06.025.
|
Raju, D., Kiran, G.R., Rao, D.V., 2013. Comparison studies on biosorption of lead(II) from an aqueous solution using anacardium occidentale and carica papaya leaves powder. J. Emerg. Trends Eng. Dev. 3, 273-283.
|
Rezania, S., Taib, S.M., Din, M.F.M., Dahalan, F.A., Kamyab, H., 2016. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard Mater. 318, 587-599. https://doi.org/10.1016/j.jhazmar.2016.07.053.
|
Romero-Cano, L.A., García-Rosero, H., Gonzalez-Gutierrez, L.V., Baldenegro-Pérez, L.A., Carrasco-Marín, F., 2017. Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. J. Clean. Prod. 162, 195-204. https://doi.org/10.1016/j.jclepro.2017.06.032.
|
Safari, E., Rahemi, N., Kahforoushan, D., Allahyari, S., 2019. Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized by combustion method using response surface methodology. J. Environ. Chem. Eng. 7(1), 102847. https://doi.org/10.1016/j.jece.2018.102847.
|
Semerciöz, A.S., Göğüş, F., Çelekli, A., Bozkurt, H., 2017. Development of carbonaceous material from grapefruit peel with microwave implementedlow temperature hydrothermal carbonization technique for the adsorption of Cu(II). J. Clean. Prod. 165, 599-610. https://doi.org/10.1016/j.jclepro.2017.07.159.
|
Singh, J., Ali, A., Kumar, R., 2013. Removal of Ni2+, Cu2+ and Zn2+ using different agricultural residues: Kinetics, isotherm modeling and mechanism via chemical blocking. Asian J. Chem. 25(12), 6377-6386. https://doi.org/10.14233/ajchem.2013.14651.
|
Srinivasa, J.R., Kesava, R.C., Prabhakar, G., 2013. Optimization of biosorption performance of Casuarina leaf powder for the removal of lead using central composite design. J. Environ. Anal. Toxicol. 3(2), 1000166. https://doi.org/10.4172/2161-0525.1000166.
|
Sun, H., Xia, N., Liu, Z., Kong, F., Wang, S., 2019. Removal of copper and cadmium ions from alkaline solutions using chitosan-tannin functional paper materials as adsorbent. Chemosphere 236, 124370. https://doi.org/10.1016/j.chemosphere.2019.124370.
|
Tasaso, P., 2014. Adsorption of copper using pomelo peel and depectinated pomelo peel. J. Clean Energy Technol. 2(2), 154-157. https://doi.org/10.7763/JOCET.2014.V2.112.
|
Villen-Guzman, M., Gutierrez-Pinilla, D., Gomez-Lahoz, C., VeredaAlonso, C., Rodriguez-Maroto, J.M., Arhoun, B., 2019. Optimization of Ni(II) biosorption from aqueous solution on modified lemon peel. Environ. Res. 179, 108849. https://doi.org/10.1016/j.envres.2019.108849.
|
Wu, H., Wang, W., Huang, Y., Han, G., Yang, S., Su, S., Sana, H., Peng, W., Cao, Y., Liu, J., 2019. Comprehensive evaluation on a prospective precipitationflotation process for metal-ions removal from wastewater simulants. J. Hazard Mater. 371, 592-602. https://doi.org/10.1016/j.jhazmat.2019.03.048.
|
Yesil, H., Tugtas, A.E., 2019. Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Sci. Total Environ. 693, 133608. https://doi.org/10.1016/j.scitotenv.2019.133608.
|
Yupadee, S., 2004. Removal of cadmium(II) and lead(II) ions from wastewater by tamarind and pomegranate shell. J. Sci. Technol. 22(2), 184-201.
|
Zhang, W., Song, J., He, Q., Wang, H., Lyu, W., Feng, H., Xiong, W., Guo, W., Wu, J., Chen, L., 2020. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J. Hazard Mater. 384, 121445. https://doi.org/10.1016/j.jhazmat.2019.121445.
|