Citation: | Agata Rosińska, Lidia Dąbrowska. 2021: Influence of type and dose of coagulants on effectiveness of PAH removal in coagulation water treatment. Water Science and Engineering, 14(3): 193-200. doi: 10.1016/j.wse.2021.08.004 |
Alexander, J.T., Hai, F.I., Al-aboud, T.M., 2012. Chemical coagulation-based processes for trace organic contaminant removal: Current state and future potential. J. Environ. Manag. 111, 195-207. https://doi.org/10.1016/j.jenvman.2012.07.023.
|
Amstaetter, K., Eek, E., Cornelissen, G., 2012. Sorption of PAHs and PCBs to activated carbon: Coal versus biomass-based quality. Chemosphere 87(5), 573-578. https://doi.org/10.1016/j.chemosphere.2012.01.007.
|
Boström, C.E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin, K., Westerholm, R., 2002. Cancer risk assessment, indicators and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 110(s3), 451-488. https://doi.org/10.1289/ehp.110-1241197.
|
Choi, K.J., Kim, S.G., Kim, S.H., 2008. Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard Mater. 151(1), 38-43. https://doi.org/10.1016/j.jhazmat.2007.05.059.
|
Council of the European Union (CEU), 1998. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Official Journal of the European Communities, L330/32.
|
Dąbrowska, L., 2018. The use polyaluminium chlorides with various basicity for removing of organic matter from water. Desalin. Water Treat. 134, 80-85. https://doi.org/10.5004/dwt.2018.22660.
|
Duan, J., Gregory, J., 2003. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 100-102, 475-502. https://doi.org/10.1016/S0001-8686(02)00067-2.
|
Kim, K.H., Jahan, S.A., Kabir, E., Brown, R.J.C., 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71-80. https://doi.org/10.1016/j.envint.2013.07.019.
|
Lawa, A.T., 2017. Polycyclic aromatic hydrocarbons: A review. Cogent Environ. Sci. 3(1), 1-86. https://doi.org/10.1080/23311843.2017.1339841.
|
Li, T., Zhu, Z., Wang, D.S., Yao, C.H., Tang, H.X., 2006. Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol. 168(2), 104-110. https://doi.org/10.1016/j.powtec.2006.07.003.
|
Li, X.M., Peng, P.A., Zhang, S.K., Man, R., Sheng, G.Y., Fu, J.M., 2009. Removal of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by three coagulants in simulated coagulation processes for drinking water treatment. J. Hazard Mater. 162(1), 180-185. https://doi.org/10.1016/j.jhazmat.2008.05.030.
|
Lin, J.-L., Ika, A.R., 2020. Minimization of halogenated DBP precursors by enhanced PACl coagulation: The impact of organic molecule fraction changes on DBP precursors destabilization with Al hydrates. Sci. Total Environ. 703, 134936. https://doi.org/10.1016/j.scitotenv.2019.134936.
|
Ma, B.W., Xue, W.J., Hu, C.Z., Liu, H.J., Qu, J.H., Li, L.L., 2019. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem. Eng. J. 359, 159-167. https://doi.org/10.1016/j.cej.2018.11.155.
|
Matilainen, A., Vepsäläinen, M., Sillanpää, M., 2010. Natural organic matter removal by coagulation during drinking water treatment: A review. Adv. Colloid Interface Sci. 159(2), 189-197. https://doi.org/10.1016/j.cis.2010.06.007.
|
Nowacka, A., Włodarczyk-Makuła, M., 2015. Effectiveness of priority PAH removal in water coagulation process. Water Supply 15(4), 683-692. https://doi.org/10.2166/ws.2015.023.
|
Rodríguez, S.G.S., Kennedy, M.D., Diepeveen, A., Prummel, H., Schippers, J.C., 2008. Optimization of PACl dose to reduce RO cleaning in an IMS. Desalination 220(1-3), 239-251. https://doi.org/10.1016/j.desal.2007.02.039.
|
Rosińska, A., Dąbrowska, L., 2018. Selection of coagulants for the removal of chosen PAH from drinking water. Water 10(7), 886-899. https://doi.org/10.3390/w10070886.
|
Sillanpää, M., Ncibi, M.C., Matilainen, A., Vepsäläinen, M., 2018. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 190, 54-71. https://doi.org/10.1016/j.chemosphere.2017.09.113.
|
Sperczyńska, E., Dąbrowska, L., Wiśniowska, E., 2016. Removal of turbidity, colour and organic matter from surface water by coagulation with polyaluminium chlorides and with activated carbon as coagulant aid. Desalin. Water Treat. 57(3), 1139-1144. https://doi.org/10.1080/19443994.2014.989634.
|
Tang, Y.N., Hu, X.Y., Cai, J., Xi, Z.H., Yang, H., 2020. An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water. Chemosphere 259, 127464. https://doi.org/10.1016/j.chemosphere.2020.127464.
|
Thuy, P.T., Moons, K., van Dijk, J.C., Anh, V.N., van der Bruggen, B., 2008. To what extent are pesticides removed from surface water during coagulation-flocculation? Water Environ. J. 22(3), 217-223. https://doi.org/10.1111/j.1747-6593.2008.00128.x.
|
Verma, A.K., Dash, R.R., Bhunia, P., 2012. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012.
|
Yang, Z.L., Gao, B.Y., Cao, B.C., Xu, W.Y., Yue, Q.Y., 2011a. Effect of OH-/Al3+ ratio on the coagulation behavior and residual aluminum speciation of polyaluminum chloride (PAC) in surface water treatment. Separ. Purif. Technol. 80(1), 59-66. https://doi.org/10.1016/j.seppur.2011.04.007.
|
Yang, Z.L., Gao, B.Y., Wang, Y., Wang, Q., Yue, Q.Y., 2011b. Aluminum fractions in surface water from reservoirs by coagulation treatment with polyaluminum chloride (PAC): Influence of initial pH and OH-/Al3+ ratio. Chem. Eng. J. 170(1), 107-113. https://doi.org/10.1016/j.cej.2011.03.036.
|
Zhang, Z., Jing, R., He, S.R., Qian, J., Zhang, K., Ma, G.L., Chang, X., Zhang, M.K., Li, Y.T., 2018. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminium chloride (PAC) and using chitosan as coagulant aid. Separ. Purif. Technol. 206, 131-139. https://doi.org/10.1016/j.seppur.2018.05.051.
|
Zhao, H., Hu, C.Z., Liu, H.J., Zhao, X., Qu, J.H., 2008. Role of aluminum speciation in the removal of disinfection byproduct precursors by a coagulation process. Environ. Sci. Technol. 42(15), 5752-5758. https://doi.org/10.1021/es8006035.
|
Zhou, Y.X., Yan, M.Q., Liu, R.P., Wang, D.S., Qu, J.H., 2017. Investigating the effect of hardness cations on coagulation: The aspect of neutralisation through Al(Ⅲ)-dissolved organic matter (DOM). Water Res. 115, 22-28. https://doi.org/10.1016/j.watres.2017.02.041.
|