Volume 14 Issue 3
Sep.  2021
Turn off MathJax
Article Contents
Li Yin, Na Mi, You-ru Yao, Jing Li, Yong Zhang, Shao-gui Yang, Huan He, Xin Hu, Shi-yin Li, Li-xiao Ni. 2021: Efficient removal of Cr(VI) by tannic acid-modified FeS nanoparticles: Performance and mechanisms. Water Science and Engineering, 14(3): 210-218. doi: 10.1016/j.wse.2021.08.006
Citation: Li Yin, Na Mi, You-ru Yao, Jing Li, Yong Zhang, Shao-gui Yang, Huan He, Xin Hu, Shi-yin Li, Li-xiao Ni. 2021: Efficient removal of Cr(VI) by tannic acid-modified FeS nanoparticles: Performance and mechanisms. Water Science and Engineering, 14(3): 210-218. doi: 10.1016/j.wse.2021.08.006

Efficient removal of Cr(VI) by tannic acid-modified FeS nanoparticles: Performance and mechanisms

doi: 10.1016/j.wse.2021.08.006
Funds:

This work was supported by the National Natural Science Foundation of China (Grants No. 51979137, 51779079, and 41931292).

  • Received Date: 2020-10-12
  • Accepted Date: 2021-02-02
  • Available Online: 2021-10-11
  • Ferrous sulfide (FeS) nanoparticles constitute an effective hexavalent chromium (Cr(VI)) treatment reagent. However, FeS nanoparticles aggregate easily, significantly limiting their engineering applicability. To overcome this shortcoming and further improve Cr(VI) removal efficiency, this study used tannic acid (TA) to modify FeS nanoparticles. The results demonstrated that TA-modified FeS nanoparticles, TA-nano-FeS, had a significantly reduced tendency to agglomerate, and maintained particle diameters of 10-100 nm, which were much shorter than diameters of FeS nanoparticles. In addition, TA-nano-FeS could combine the surface-active functional groups of TA. The maximum removal capacity of TA-nano-FeS was 381.04 mg/g, which was 2.92 and 1.83 times higher than those of TA and nano-FeS, respectively. Furthermore, the acidic condition was more beneficial for Cr(VI) removal, and the coexisting cations (Ca2+ and Mg2+) slightly decreased the removal efficiency of Cr(VI). Adsorption, reduction, and co-precipitation were the removal mechanisms, and the reaction products included FeCr2O4, Cr2O3, Fe2O3, Cr(OH)3, and S8. The results provided valuable information for the practical application of TA-nano-FeS in Cr(VI) removal.

     

  • loading
  • Andjelković, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., Verhe, R., 2006. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 98(1), 23-31. https://doi.org/10.1016/j.foodchem.2005.05.044.
    Cao, Y.Z., Zheng, R.F., Ji, X.H., Liu, H., Xie, R.G., Yang, W.S., 2014. Syntheses and characterization of nearly monodispersed, size-tunable silver nanoparticles over a wide size range of 7-200 nm by tannic acid reduction. Langmuir 30(13), 3876-3882. https://doi.org/10.1021/la500117b.
    Cheng, C., Jia, M.Y., Cui, L.L., Li, Y., Xu, L.S., Jin, X.J., 2020. Adsorption of Cr(VI) ion on tannic acid/graphene oxide composite aerogel: Kinetics, equilibrium, and thermodynamics studies. Biomass Convers. Biorefinery 36. https://doi.org/10.1007/s13399-020-00899-4.
    Dhal, B., Thatoi, H.N., Das, N.N., Pandey, B.D., 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard Mater. 250(251), 272-291. https://doi.org/10.1016/j.jhazmat.2013.01.048.
    Du, J.K., Bao, J.G., Lu, C.G., Werner, D., 2016. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Res. 102, 73-81. https://doi.org/10.1016/j.watres.2016.06.009.
    Fu, F.L., Wang, Q., 2011. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
    Gallios, G.P., Vaclavikova, M., 2008. Removal of chromium(VI) from water streams: A thermodynamic study. Environ. Chem. Lett. 6(4), 235-240. https://doi.org/10.1007/s10311-007-0128-8.
    Gong, Y.Y., Liu, Y.Y., Xiong, Z., Zhao, D.Y., 2014. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry. Environ. Sci. Technol. 48(7), 3986-3994. https://doi.org/10.1021/es404418a.
    Han, Y.S., Gallegos, T.J., Demond, A.H., Hayes, K.F., 2011. FeS-coated sand for removal of arsenic(Ⅲ) under anaerobic conditions in permeable reactive barriers. Water Res. 45(2), 593-604. https://doi.org/10.1016/j.watres.2010.09.033.
    Huang, D., Li, Q.X., Zhou, Y.J., Li, J.X., Wei, Y., Hu, Y.C., Lian, X.J., Chen, S., Chen, W.Y., 2020. Ag nanoparticles incorporated tannic acid/nanoapatite composite coating on Ti implant surfaces for enhancement of antibacterial and antioxidant properties. Surf. Coating. Technol. 399, 126169. https://doi.org/10.1016/j.surfcoat.2020.126169.
    Huang, Z.H., Zhang, B., Fang, G.Z., 2013. Adsorption behavior of Cr(VI) from aqueous solutions by microwave modified porous larch tannin resin. Bioresources 8(3), 4593-4608. https://doi.org/10.15376/biores.8.3.4593-4608.
    Huang, Z.N., Wang, X.L., Yang, D.S., 2015. Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng. 8(3), 226-232. https://doi.org/10.1016/j.wse.2015.01.009.
    Jin, X.B., Xiang, E.L., Zhang, R., Qin, D.C., Jiang, M.L., Jiang, Z.H., 2021. Halloysite nanotubes immobilized by chitosan/tannic acid complex as a green flame retardant for bamboo fiber/poly (lactic acid) composites. J. Appl. Polym. Sci. e49621. https://doi.org/10.1002/app.49621.
    Kang, S.Y., Lee, J.U., Kim, K.W., 2007. Biosorption of Cr(Ⅲ) and Cr(VI) onto the cell surface of pseudomonas aeruginosa. Biochem. Eng. J. 36(1), 54-58. https://doi.org/10.1016/j.bej.2006.06.005.
    Lei, C., Wang, C.W., Chen, W.Q., He, M.H., Huang, B.B., 2020. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium:Removal efficacy and mechanisms. Sci. Total Environ. 733, 139316. https://doi.org/10.1016/j.scitotenv.2020.139316.
    Lipczynska-kochany, E., Kochany, J., 2009. Effect of humate on biological treatment of wastewater containing heavy metals. Chemosphere 77(2), 279-284. https://doi.org/10.1016/j.chemosphere.2009.07.036.
    Liu, M.Y., Huang, R.L., Che, M.D., Su, R.X., Qi, W., He, Z.M., 2018. Tannic acid-assisted fabrication of Fe-Pd nanoparticles for stable rapid dechlorination of two organochlorides. Chem. Eng. J. 352, 716-721. https://doi.org/10.1016/j.cej.2018.07.070.
    Ludwig, R.D., Su, C.M., Lee, T.R., Wilkin, R.T., Acree, S.D., Ross, R.R., Keeley, A., 2007. In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation. Environ. Sci. Technol. 41(15), 5299-5305. https://doi.org/10.1021/es070025z.
    Lyu, H.H., Tang, J.C., Huang, Y., Gai, L.S., Zeng, E.Y., Liber, K., Gong, Y.Y., 2016. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J. 322, 516-524. https://doi.org/10.1016/j.cej.2017.04.058.
    Ma, Z.H., Lu, Z.B., Shi, B., 2003. Chemical properties and application of tannic acid. Nat. Prod. Res. Dev. 15(1), 87-91 (in Chinese). https://doi.org/10.16333/j.1001-6880.2003.01.023.
    Matern, K., Kletti, H., Mansfeldt, T., 2016. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites. Chemosphere 155, 188-195. https://doi.org/10.1016/j.chemosphere.2016.04.009.
    Mohan, D., Pittman, C.U., 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard Mater. 137(2), 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060.
    Özacar, M., Şengil, I.A., 2003. Enhancing phosphate removal from wastewater by using polyelectrolytes and clay injection. J. Hazard Mater. 100(1-3), 131-146. https://doi.org/10.1016/S0304-3894(03)00070-0.
    Piella, J., Neus, G.B., Víctor, P., 2016. Size-controlled synthesis of sub-10 nm citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 28(4), 1066-1075. https://doi.org/10.1021/acs.chemmater.5b04406.
    Saman, N., Johari, K., Mat, H., 2014. Synthesis and characterization of sulfurfunctionalized silica materials towards developing adsorbents for mercury removal from aqueous solutions. Microporous Mesoporous Mater. 194, 38-45. https://doi.org/10.1016/j.micromeso.2014.03.036.
    Sánchez-Martín, J., Beltrán-Heredia, J., Gibello-Pérez, P., 2011. Adsorbent biopolymers from tannin extracts for water treatment. Chem. Eng. J. 168(3), 1241-1247. https://doi.org/10.1016/j.cej.2011.02.022.
    Setshedi, K.Z., Bhaumik, M., Onyango, M.S., Maity, A., 2015. High-performance towards Cr(VI) removal using multi-active sites of polypyrrolegraphene oxide nanocomposites: Batch and column studies. Chem. Eng. J. 262, 921-931. https://doi.org/10.1016/j.cej.2014.10.034.
    Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., Rashid, M.I., 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 178, 513-533. https://doi.org/10.1016/j.chemosphere.2017.03.074.
    Shao, D.D., Ren, X.M., Wen, J., Hu, S., Xiong, J., Jiang, T., Wang, X.L., Wang, X.K., 2016. Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism. J. Hazard Mater. 302, 1-9. https://doi.org/10.1016/j.jhazmat.2015.09.043.
    Su, M., Yin, W.Z., Liu, L., Li, P., Fang, Z.Q., Fang, Y.L., Chiang, P.C., Wu, J.H., 2019. Enhanced Cr(VI) stabilization in soil by carboxymethyl cellulose-stabilized nanosized Fe0 (CMC-nFe0) and mixed anaerobic microorganisms. J. Environ. Manag. 257, 109951. https://doi.org/10.1016/j.jenvman.2019.109951.
    Su, Y.M., Adeleye, A.S., Keller, A.A., Huang, Y.X., Dai, C.M., Zhou, X.F., Zhang, Y.L., 2015. Magnetic sulfide-modified nanoscale zerovalent iron(S-nZVI) for dissolved metal ion removal. Water Res. 74(5), 47-57. https://doi.org/10.1016/j.watres.2015.02.004.
    Sun, Y., Liu, Y.L., Lou, Z.M., Yang, K.L., Lv, D., Zhou, J.S., Baig, S.A., Xu, X.H., 2018. Enhanced performance for Hg(Ⅱ) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: Stabilization effects and removal mechanism. Chem. Eng. J. 344, 616-624. https://doi.org/10.1016/j.cej.2018.03.126.
    Tian, X.L., Wang, W.H., Cao, G.Y., 2007. A facile aqueous-phase route for the synthesis of silver nanoplates. Mater. Lett. 61(1), 130-133. https://doi.org/10.1016/j.matlet.2006.04.021.
    Tian, X.L., Li, J., Pan, S.L., 2009. Facile synthesis of single-crystal silver nanowires through a tannin-reduction process. J. Nanoparticle Res. 11(7), 1839-1844. https://doi.org/10.1007/s11051-009-9700-4.
    Wang, L.Y., Tan, K., Luo, J., 2019a. Preparation of photosensitive carbon nanotubes by tannic acid modification and preparation of UV-curable AESO composite films. Imag. Sci. Photochem. 37(3), 175-184 (in Chinese). https://doi.org/10.7517/issn.1674-0475.190201.
    Wang, T., Liu, Y., Wang, J., Wang, X., Liu, B., Wang, Y., 2019b. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. J. Environ. Manag. 231, 679-686. https://doi.org/10.1016/j.jenvman.2018.10.085.
    Wu, J., Wang, X.B., Zeng, R.J., 2017. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr(VI) removal as an example. J. Hazard Mater. 333, 275-284. https://doi.org/10.1016/j.jhazmat.2017.03.023.
    Wu, J., Zeng, R.J., 2018. In situ preparation of stabilized iron sulfide nanoparticle-impregnated alginate composite for selenite remediation. Environ. Sci. Technol. (52), 6487-6496. https://doi.org/10.1021/acs.est.7b05861.
    Xie, Y., Gu, L., Mao, S., Wu, D.L., Fan, J.H., 2019. The role of structural elements and its oxidative products on the surface of ferrous sulfide in reducing the electron-withdrawing groups of tetracycline. Chem. Eng. J. 378, 122195. https://doi.org/10.1016/j.cej.2019.122195.
    Xiong, L.L., Huang, R., Chai, H.H., 2020. Facile synthesis of Fe3O4@tannic acid@Au nanocomposites as a catalyst for 4-nitrophenol and methylene blue removal. ACS Omega 5(33), 20903-20911. https://doi.org/10.1021/acsomega.0c02347.
    Xiong, Z., He, F., Zhao, D.Y., Barnett, M.O., 2009. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res. 43(20), 5171-5179. https://doi.org/10.1016/j.watres.2009.08.018.
    Yan, W.T., Shi, M.Q., Dong, C.X., Liu, L.F., Gao, C.J., 2020. Applications of tannic acid in membrane technologies: A review. Adv. Colloid Interface Sci. 284, 102267. https://doi.org/10.1016/j.cis.2020.102267.
    Yang, H.P., Hong, M., Chen, S.Y., 2019. Removal of Cr(VI) with nano-FeS and CMC-FeS and transport properties in porous media. Environ. Technol. 41(22), 2935-2945. https://doi.org/10.1080/09593330.2019.1588921.
    Yao, Y.R., Mi, N., He, C., He, H., Zhang, Y., Zhang, Y.C., Yin, L., Li, J., Yang, S.G., Li, S.Y., et al., 2020a. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI). Separ. Purif. Technol. 240, 116623. https://doi.org/10.1016/j.seppur.2020.116623.
    Yao, Y.R., Mi, N., He, C., Zhang, Y., Yin, L., Li, J., Wang, W., Yang, S.G., He, H., Li, S.Y., et al., 2020b. A novel colloid composited with polyacrylate and nano ferrous sulfide and its efficiency and mechanism of removal of Cr(VI) from water. J. Hazard Mater. 399, 123082. https://doi.org/10.1016/j.jhazmat.2020.123082.
    Zhang, H., Peng, L., Chen, A.W., Shang, C., Lei, M., He, K., Luo, S., Shao, J.H., Zeng, Q.R., 2019. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydr. Polym. 214, 276-285. https://doi.org/10.1016/j.carbpol.2019.03.056.
    Zhao, L.Z., Zhao, Y.S., Yang, B.J., Teng, H.H., 2019. Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater. Water Air Soil Pollut. 230(6), 113. https://doi.org/10.1007/s11270-019-4166-1.
    Zhao, Y.H., Wang, C.Y., Li, Y.Y., Wei, Z.Y., 2008. Experimental study on the treatment of wastewater containing Cr(VI) with ferrous sulfide. J. Shenyang Jianzhu Univ. (Nat. Sci.) 24(6), 117-119 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (335) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return