Citation: | Li Yin, Na Mi, You-ru Yao, Jing Li, Yong Zhang, Shao-gui Yang, Huan He, Xin Hu, Shi-yin Li, Li-xiao Ni. 2021: Efficient removal of Cr(VI) by tannic acid-modified FeS nanoparticles: Performance and mechanisms. Water Science and Engineering, 14(3): 210-218. doi: 10.1016/j.wse.2021.08.006 |
Andjelković, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., Verhe, R., 2006. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 98(1), 23-31. https://doi.org/10.1016/j.foodchem.2005.05.044.
|
Cao, Y.Z., Zheng, R.F., Ji, X.H., Liu, H., Xie, R.G., Yang, W.S., 2014. Syntheses and characterization of nearly monodispersed, size-tunable silver nanoparticles over a wide size range of 7-200 nm by tannic acid reduction. Langmuir 30(13), 3876-3882. https://doi.org/10.1021/la500117b.
|
Cheng, C., Jia, M.Y., Cui, L.L., Li, Y., Xu, L.S., Jin, X.J., 2020. Adsorption of Cr(VI) ion on tannic acid/graphene oxide composite aerogel: Kinetics, equilibrium, and thermodynamics studies. Biomass Convers. Biorefinery 36. https://doi.org/10.1007/s13399-020-00899-4.
|
Dhal, B., Thatoi, H.N., Das, N.N., Pandey, B.D., 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard Mater. 250(251), 272-291. https://doi.org/10.1016/j.jhazmat.2013.01.048.
|
Du, J.K., Bao, J.G., Lu, C.G., Werner, D., 2016. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Res. 102, 73-81. https://doi.org/10.1016/j.watres.2016.06.009.
|
Fu, F.L., Wang, Q., 2011. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
|
Gallios, G.P., Vaclavikova, M., 2008. Removal of chromium(VI) from water streams: A thermodynamic study. Environ. Chem. Lett. 6(4), 235-240. https://doi.org/10.1007/s10311-007-0128-8.
|
Gong, Y.Y., Liu, Y.Y., Xiong, Z., Zhao, D.Y., 2014. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry. Environ. Sci. Technol. 48(7), 3986-3994. https://doi.org/10.1021/es404418a.
|
Han, Y.S., Gallegos, T.J., Demond, A.H., Hayes, K.F., 2011. FeS-coated sand for removal of arsenic(Ⅲ) under anaerobic conditions in permeable reactive barriers. Water Res. 45(2), 593-604. https://doi.org/10.1016/j.watres.2010.09.033.
|
Huang, D., Li, Q.X., Zhou, Y.J., Li, J.X., Wei, Y., Hu, Y.C., Lian, X.J., Chen, S., Chen, W.Y., 2020. Ag nanoparticles incorporated tannic acid/nanoapatite composite coating on Ti implant surfaces for enhancement of antibacterial and antioxidant properties. Surf. Coating. Technol. 399, 126169. https://doi.org/10.1016/j.surfcoat.2020.126169.
|
Huang, Z.H., Zhang, B., Fang, G.Z., 2013. Adsorption behavior of Cr(VI) from aqueous solutions by microwave modified porous larch tannin resin. Bioresources 8(3), 4593-4608. https://doi.org/10.15376/biores.8.3.4593-4608.
|
Huang, Z.N., Wang, X.L., Yang, D.S., 2015. Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng. 8(3), 226-232. https://doi.org/10.1016/j.wse.2015.01.009.
|
Jin, X.B., Xiang, E.L., Zhang, R., Qin, D.C., Jiang, M.L., Jiang, Z.H., 2021. Halloysite nanotubes immobilized by chitosan/tannic acid complex as a green flame retardant for bamboo fiber/poly (lactic acid) composites. J. Appl. Polym. Sci. e49621. https://doi.org/10.1002/app.49621.
|
Kang, S.Y., Lee, J.U., Kim, K.W., 2007. Biosorption of Cr(Ⅲ) and Cr(VI) onto the cell surface of pseudomonas aeruginosa. Biochem. Eng. J. 36(1), 54-58. https://doi.org/10.1016/j.bej.2006.06.005.
|
Lei, C., Wang, C.W., Chen, W.Q., He, M.H., Huang, B.B., 2020. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium:Removal efficacy and mechanisms. Sci. Total Environ. 733, 139316. https://doi.org/10.1016/j.scitotenv.2020.139316.
|
Lipczynska-kochany, E., Kochany, J., 2009. Effect of humate on biological treatment of wastewater containing heavy metals. Chemosphere 77(2), 279-284. https://doi.org/10.1016/j.chemosphere.2009.07.036.
|
Liu, M.Y., Huang, R.L., Che, M.D., Su, R.X., Qi, W., He, Z.M., 2018. Tannic acid-assisted fabrication of Fe-Pd nanoparticles for stable rapid dechlorination of two organochlorides. Chem. Eng. J. 352, 716-721. https://doi.org/10.1016/j.cej.2018.07.070.
|
Ludwig, R.D., Su, C.M., Lee, T.R., Wilkin, R.T., Acree, S.D., Ross, R.R., Keeley, A., 2007. In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation. Environ. Sci. Technol. 41(15), 5299-5305. https://doi.org/10.1021/es070025z.
|
Lyu, H.H., Tang, J.C., Huang, Y., Gai, L.S., Zeng, E.Y., Liber, K., Gong, Y.Y., 2016. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J. 322, 516-524. https://doi.org/10.1016/j.cej.2017.04.058.
|
Ma, Z.H., Lu, Z.B., Shi, B., 2003. Chemical properties and application of tannic acid. Nat. Prod. Res. Dev. 15(1), 87-91 (in Chinese). https://doi.org/10.16333/j.1001-6880.2003.01.023.
|
Matern, K., Kletti, H., Mansfeldt, T., 2016. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites. Chemosphere 155, 188-195. https://doi.org/10.1016/j.chemosphere.2016.04.009.
|
Mohan, D., Pittman, C.U., 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard Mater. 137(2), 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060.
|
Özacar, M., Şengil, I.A., 2003. Enhancing phosphate removal from wastewater by using polyelectrolytes and clay injection. J. Hazard Mater. 100(1-3), 131-146. https://doi.org/10.1016/S0304-3894(03)00070-0.
|
Piella, J., Neus, G.B., Víctor, P., 2016. Size-controlled synthesis of sub-10 nm citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 28(4), 1066-1075. https://doi.org/10.1021/acs.chemmater.5b04406.
|
Saman, N., Johari, K., Mat, H., 2014. Synthesis and characterization of sulfurfunctionalized silica materials towards developing adsorbents for mercury removal from aqueous solutions. Microporous Mesoporous Mater. 194, 38-45. https://doi.org/10.1016/j.micromeso.2014.03.036.
|
Sánchez-Martín, J., Beltrán-Heredia, J., Gibello-Pérez, P., 2011. Adsorbent biopolymers from tannin extracts for water treatment. Chem. Eng. J. 168(3), 1241-1247. https://doi.org/10.1016/j.cej.2011.02.022.
|
Setshedi, K.Z., Bhaumik, M., Onyango, M.S., Maity, A., 2015. High-performance towards Cr(VI) removal using multi-active sites of polypyrrolegraphene oxide nanocomposites: Batch and column studies. Chem. Eng. J. 262, 921-931. https://doi.org/10.1016/j.cej.2014.10.034.
|
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., Rashid, M.I., 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 178, 513-533. https://doi.org/10.1016/j.chemosphere.2017.03.074.
|
Shao, D.D., Ren, X.M., Wen, J., Hu, S., Xiong, J., Jiang, T., Wang, X.L., Wang, X.K., 2016. Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism. J. Hazard Mater. 302, 1-9. https://doi.org/10.1016/j.jhazmat.2015.09.043.
|
Su, M., Yin, W.Z., Liu, L., Li, P., Fang, Z.Q., Fang, Y.L., Chiang, P.C., Wu, J.H., 2019. Enhanced Cr(VI) stabilization in soil by carboxymethyl cellulose-stabilized nanosized Fe0 (CMC-nFe0) and mixed anaerobic microorganisms. J. Environ. Manag. 257, 109951. https://doi.org/10.1016/j.jenvman.2019.109951.
|
Su, Y.M., Adeleye, A.S., Keller, A.A., Huang, Y.X., Dai, C.M., Zhou, X.F., Zhang, Y.L., 2015. Magnetic sulfide-modified nanoscale zerovalent iron(S-nZVI) for dissolved metal ion removal. Water Res. 74(5), 47-57. https://doi.org/10.1016/j.watres.2015.02.004.
|
Sun, Y., Liu, Y.L., Lou, Z.M., Yang, K.L., Lv, D., Zhou, J.S., Baig, S.A., Xu, X.H., 2018. Enhanced performance for Hg(Ⅱ) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: Stabilization effects and removal mechanism. Chem. Eng. J. 344, 616-624. https://doi.org/10.1016/j.cej.2018.03.126.
|
Tian, X.L., Wang, W.H., Cao, G.Y., 2007. A facile aqueous-phase route for the synthesis of silver nanoplates. Mater. Lett. 61(1), 130-133. https://doi.org/10.1016/j.matlet.2006.04.021.
|
Tian, X.L., Li, J., Pan, S.L., 2009. Facile synthesis of single-crystal silver nanowires through a tannin-reduction process. J. Nanoparticle Res. 11(7), 1839-1844. https://doi.org/10.1007/s11051-009-9700-4.
|
Wang, L.Y., Tan, K., Luo, J., 2019a. Preparation of photosensitive carbon nanotubes by tannic acid modification and preparation of UV-curable AESO composite films. Imag. Sci. Photochem. 37(3), 175-184 (in Chinese). https://doi.org/10.7517/issn.1674-0475.190201.
|
Wang, T., Liu, Y., Wang, J., Wang, X., Liu, B., Wang, Y., 2019b. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. J. Environ. Manag. 231, 679-686. https://doi.org/10.1016/j.jenvman.2018.10.085.
|
Wu, J., Wang, X.B., Zeng, R.J., 2017. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr(VI) removal as an example. J. Hazard Mater. 333, 275-284. https://doi.org/10.1016/j.jhazmat.2017.03.023.
|
Wu, J., Zeng, R.J., 2018. In situ preparation of stabilized iron sulfide nanoparticle-impregnated alginate composite for selenite remediation. Environ. Sci. Technol. (52), 6487-6496. https://doi.org/10.1021/acs.est.7b05861.
|
Xie, Y., Gu, L., Mao, S., Wu, D.L., Fan, J.H., 2019. The role of structural elements and its oxidative products on the surface of ferrous sulfide in reducing the electron-withdrawing groups of tetracycline. Chem. Eng. J. 378, 122195. https://doi.org/10.1016/j.cej.2019.122195.
|
Xiong, L.L., Huang, R., Chai, H.H., 2020. Facile synthesis of Fe3O4@tannic acid@Au nanocomposites as a catalyst for 4-nitrophenol and methylene blue removal. ACS Omega 5(33), 20903-20911. https://doi.org/10.1021/acsomega.0c02347.
|
Xiong, Z., He, F., Zhao, D.Y., Barnett, M.O., 2009. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res. 43(20), 5171-5179. https://doi.org/10.1016/j.watres.2009.08.018.
|
Yan, W.T., Shi, M.Q., Dong, C.X., Liu, L.F., Gao, C.J., 2020. Applications of tannic acid in membrane technologies: A review. Adv. Colloid Interface Sci. 284, 102267. https://doi.org/10.1016/j.cis.2020.102267.
|
Yang, H.P., Hong, M., Chen, S.Y., 2019. Removal of Cr(VI) with nano-FeS and CMC-FeS and transport properties in porous media. Environ. Technol. 41(22), 2935-2945. https://doi.org/10.1080/09593330.2019.1588921.
|
Yao, Y.R., Mi, N., He, C., He, H., Zhang, Y., Zhang, Y.C., Yin, L., Li, J., Yang, S.G., Li, S.Y., et al., 2020a. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI). Separ. Purif. Technol. 240, 116623. https://doi.org/10.1016/j.seppur.2020.116623.
|
Yao, Y.R., Mi, N., He, C., Zhang, Y., Yin, L., Li, J., Wang, W., Yang, S.G., He, H., Li, S.Y., et al., 2020b. A novel colloid composited with polyacrylate and nano ferrous sulfide and its efficiency and mechanism of removal of Cr(VI) from water. J. Hazard Mater. 399, 123082. https://doi.org/10.1016/j.jhazmat.2020.123082.
|
Zhang, H., Peng, L., Chen, A.W., Shang, C., Lei, M., He, K., Luo, S., Shao, J.H., Zeng, Q.R., 2019. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydr. Polym. 214, 276-285. https://doi.org/10.1016/j.carbpol.2019.03.056.
|
Zhao, L.Z., Zhao, Y.S., Yang, B.J., Teng, H.H., 2019. Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater. Water Air Soil Pollut. 230(6), 113. https://doi.org/10.1007/s11270-019-4166-1.
|
Zhao, Y.H., Wang, C.Y., Li, Y.Y., Wei, Z.Y., 2008. Experimental study on the treatment of wastewater containing Cr(VI) with ferrous sulfide. J. Shenyang Jianzhu Univ. (Nat. Sci.) 24(6), 117-119 (in Chinese).
|