Volume 14 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Jun He, Xiao-ying Feng, Li-rong Zhou, Lei Zhang. 2021: Utilization of soda residue and ground granulated blast furnace slag to stabilize/solidify sewage sludge in leachate soaking environment. Water Science and Engineering, 14(4): 304-313. doi: 10.1016/j.wse.2021.08.007
Citation: Jun He, Xiao-ying Feng, Li-rong Zhou, Lei Zhang. 2021: Utilization of soda residue and ground granulated blast furnace slag to stabilize/solidify sewage sludge in leachate soaking environment. Water Science and Engineering, 14(4): 304-313. doi: 10.1016/j.wse.2021.08.007

Utilization of soda residue and ground granulated blast furnace slag to stabilize/solidify sewage sludge in leachate soaking environment

doi: 10.1016/j.wse.2021.08.007
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 41772332) and the Major Project of Technical Innovation in Hubei Province (Grant No. 2017ACA090).

  • Received Date: 2020-10-25
  • Accepted Date: 2021-05-21
  • Available Online: 2021-12-15
  • This study investigated sewage sludge stabilized/solidified with soda residue (SR) and ground granulated blast furnace slag (GGBS) after being dewatered with quicklime. The soaking durability test was conducted on the solidified sludge in tap water or landfill leachate. The toxicity and mineralogical characteristics of the solidified sludge were evaluated. The results showed that the unconfined compressive strength (UCS) of the solidified sludge met the strength requirement for use as a temporary cover material (≥50 kPa) for a short time (< 7 d). The solidified sludge had considerable soaking durability because UCS increased with the soaking time. The increase in the GGBS dosage improved the soaking durability of the solidified sludge. The UCS values of sludge solidified with 50% SR and 30% GGBS (sample S5G3) and with 80% SR (sample S8G0) after soaking in leachate for 60 d were 712.9 and 82.6 kPa, respectively. The X-ray diffraction (XRD) analysis indicated that hydration products, such as ettringite, Friedel's salt, gismondine, brushite, and hydrocalumite, contributed to the strength, soaking durability, and leach-ability performance of the solidified sludge. The inhibition of some hydration reactions and precipitation of ettringite and calcite on the surface of the specimens soaked in leachate led to a lower strength than that soaked in tap water. Sample S5G3 has the potential to be used as a filling or construction material, and sample S8G0 is suitable to be used as a temporary cover material in landfill.

     

  • loading
  • Ahmed, A., Issa, U.H., 2014. Stability of soft clay soil stabilised with recycled gypsum in a wet environment. Soils Found. 54(3), 405-416. https://doi.org/10.1016/j.sandf.2014.04.009.
    Ahmed, A., 2015. Compressive strength and microstructure of soft soil stabilized with recycled gypsum. Appl. Clay Sci. 104, 27-35. https://doi.org/10.1016/j.clay.2014.11.031.
    Asavapisit, S., Naksrichum, S., Harnwajanawong, N., 2005. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge. Cement Concr. Res. 35(6), 1042-1049. https://doi.org/10.1016/j.cemconres.2004.07.041.
    Chang, J.E., Lin, T.T., Ko, M.S., Liaw, D.S., 1999. Stabilization/solidification of sludges containing heavy metals by using cement and waste pozzolans. J. Environ. Sci. Health 34(5), 1143-1160. https://doi.org/10.1080/10934529909376887.
    Chen, P., Feng, B., Zhan, L.T., 2014. Solidification of dewatered sewage sludge usingbottom ashof MSWIas skeletonmaterial. ChinaEnviron.Sci. 34(10), 2624-2630(inChinese).https://doi.org/10.3969/j.issn.1000-6923.2014.10.026.
    Duan, X.M., Xia, J.W., Yang, J.P., 2014. Influence of coal gangue fine aggregate on microstructure of cement mortar and its action mechanism. J. Build. Mater. 17(4), 700-705 (in Chinese). https://doi.org/10.3969/j.issn.1007-9629.2014.04.025.
    He, J., Li, F., Li, Y., Cui, X.L., 2015. Modified sewage sludge as temporary landfill cover material. Water Sci. Eng. 8(3), 257-262. https://doi.org/10.1016/j.wse.2015.03.003.
    He, J., Wang, X.Q., Su, Y., Li, Z.X., Shi, X.K., 2019. Shear strength of stabilized clay treated with soda residue and ground granulated blast furnace slag. J. Mater. Civ. Eng. 31(3), 06018029. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002629.
    He, J., Li, Z.X., Wang, X.Q., Shi, X.K., 2020. Durability of soft soil treated with soda residue and ground granulated blast furnace slag in a soaking environment. J. Mater. Civ. Eng. 32(3), 06019018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003033.
    He, J., Feng, X.Y., Zhou, L.R., Zhang, L., 2021. The effect of leachate seepage on the mechanical properties and microstructure of solidified sludge when used as a landfill temporary cover material. Waste Manag. 130, 127-135. https://doi.org/10.1016/j.wasman.2021.05.016.
    Hu, X.T., 2016. Experimental Study on Physical and Mechanical Characteristics of Solidified Municipal Sludge under Complicated Environment. Ph. D. Dissertation. Liaoning Technical University, Fuxin (in Chinese).
    Huang, X., Hu, T.G., 1998. On stabilization of soft soil with waste gypsum and cement. Chin. J. Geotech. Eng. 20(5), 72-76 (in Chinese).
    Joint Committee on Powder Diffraction Standards (JCPDS), 1999. Index to the Powder Diffraction File. International Centre for Diffraction Data, Newtown Square.
    Ke, X., Bernal, S.A., Provis, J.L., 2017. Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cement Concr. Res. 100, 1-13. https://doi.org/10.1016/j.cemconres.2017.05.015.
    Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H., 2002. Present and long-term composition of MSW landfill leachate:A review. Crit. Rev. Environ. Sci. Technol. 32(4), 297-336. https://doi.org/10.1080/10643380290813462.
    Lang, L., Chen, B., Li, N., 2020. Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization. Mar. Georesour. Geotechnol. 39(6), 659-669. https://doi.org/10.1080/1064119X.2020.1741050.
    Lang, L., Chen, B., Chen, B., 2021. Strength evolutions of varying water content-dredged sludge stabilized with alkali-activated ground granulated blast-furnace slag. Construct. Build. Mater. 275, 122111. https://doi.org/10.1016/j.conbuildmat.2020.122111.
    Li, L., Zhu, W., Lin, C., 2005. Experimental study on sludge solidification by using skeleton construction method. China Water & Wastewater 21(6), 41-43 (in Chinese). https://doi.org/10.3321/j.issn:1000-4602.2005.06.012.
    Li, Y.L., Liu, J.W., Chen, J.Y., Shi, Y.F., Mao, W., Liu, H., Li, Y., He, S., Yang, J.K., 2014. Reuse of dewatered sewage sludge conditioned with skeleton builders as landfill cover material. Int. J. Environ. Sci. Technol. 11, 233-240. https://doi.org/10.1007/s13762-013-0199-y.
    Malliou, O., Katsioti, M., Georgiadis, A., Katsiri, A., 2007. Properties of stabilized/solidified admixtures of cement and sewage sludge. Cement Concr. Compos. 29(1), 55-61. https://doi.org/10.1016/j.cemconcomp.2006.08.005.
    Obuzor, G.N., Kinuthia, J.M., Robinson, R.B., 2011. Enhancing the durability of flooded low-capacity soils by utilizing lime-activated ground granulated blast furnace slag (GGBS). Eng. Geol. 123(3), 179-186. https://doi.org/10.1016/j.enggeo.2011.07.009.
    Qian, G., Cao, Y., Chui, P., Tay, J., 2006. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. J. Hazard Mater. 129(1-3), 274-281. https://doi.org/10.1016/j.jhazmat.2005.09.003.
    Seryotkin,Y.V.,Sokol,E.V.,Kokh,S.N.,Sharygin,V.V.,2019.Naturalbentorite Cr3+ derivate of ettringite:Determination of crystal structure. Phys. Chem. Miner. 46(6), 553-570. https://doi.org/10.1007/s00269-019-01022-4.
    Sun, J.Y., Gu, X., 2014. Engineering properties of the new non-clinker incorporating soda residue solidified soil. J. Build. Mater. 17(6), 1031-1035 (in Chinese). https://doi.org/10.3969/j.issn.1007-9629.2014.06.016.
    Talero, R., Trusilewicz, L., Delgado, A., Pedrajas, C., Lannegrand, R., Rahhal, V., Mejia, R., Delvasto, S., Ramirez, F.A., 2011. Comparative and semi-quantitative XRD analysis of Friedel's salt originating from pozzolan and Portland cement. Construct. Build. Mater. 25(5), 2370-2380. https://doi.org/10.1016/j.conbuildmat.2010.11.037.
    Ubbrıaco, P., Calabrese, D., 2000. Hydration behavior of mixtures of cement and fly ash with high sulphate and chloride content. J. Therm. Anal. Calorim. 61(2), 615-623. https://doi.org/10.1023/A:1010198224297.
    United States Environment Protection Agency (USEPA), 1992. Toxicity Characteristics Leaching Procedure (Method 1311). United States Environment Protection Agency.
    Wang, A.G., Zheng, Y., Zhang, Z.H., Liu, K.W., Li, Y., Shi, L., Sun, D.S., 2020. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes:A review. Engineering 6(6), 695-706. https://doi.org/10.1016/j.eng.2019.08.019.
    Wei, N., Hou, H.B., Zhang, F.W., 2009. Investigation of sludge drying and modification treatment by an innovative composite modifier. J. Wuhan Univ. Technol. 31(10), 97-100 (in Chinese). https://doi.org/10.3963/j.issn.1671-4431.2009.10.025.
    Xia, W.Y., Du, Y.J., Li, F.S., Li, C.P., Yan, X.L., Arulrajah, A., Wang, F., Song, D.J., 2019. In-situ solidification/stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder. J. Hazard Mater. 369, 353-361. https://doi.org/10.1016/j.jhazmat.2019.02.031.
    Xue, Q., Chen, Y.J., 2015. Experimental study on municipal sludge dewatering capacity by using quicklime and slag. Desalination Water Treat. 54(6), 1499-1506. https://doi.org/10.1080/19443994.2014.889607.
    Yi, Y., Gu, L., Liu, S., Puppala, A.J., 2015. Carbide slag-activated ground granulated blastfurnace slag for soft clay stabilization. Can. Geotech. J. 52(5), 656-663. https://doi.org/10.1139/cgj-2014-0007.
    Yi, Y., Liska, M., Jin, F., Al-tabbaa, A., 2016. Mechanism of reactive magnesia-ground granulated blastfurnace slag (GGBS) soil stabilization. Can. Geotech. J. 53(5), 773-782. https://doi.org/10.1139/cgj-2015-0183.
    Yu, S.Y., Du, B., Baheiduola, A., Geng, C., Liu, J.G., 2020. HCB dechlorination combined with heavy metals immobilization in MSWI fly ash by using n-Al/CaO dispersion mixture. J. Hazard Mater. 392, 122510. https://doi.org/10.1016/j.jhazmat.2020.122510.
    Zhan, L.T., Luo, X.Y., Guan, R.Q., Zeng, X., Lan, J.W., Chen, Y.M., Lin, W.A., 2013. Failure mechanism of sludge pit and downstream waste slope of a MSW landfill. Chin. J. Geotech. Eng. 35(7), 1189-1196 (in Chinese).
    Zhen, G.Y., Lu, X.Q., Cheng, X.B., Chen, H., Yan, X.F., Zhao, Y.C., 2012. Hydration process of the aluminate 12CaO·7Al2O3-assisted Portland cementbased solidification/stabilization of sewage sludge. Construct. Build. Mater. 30, 675-681. https://doi.org/10.1016/j.conbuildmat.2011.12.049.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (124) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return