Volume 14 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Habib Etemadi, Hamidreza Qazvini, Elham Shokri. 2021: Effect of coagulation treatment on antifouling properties of PVC nanocomposite membrane in a submerged membrane system for water treatment. Water Science and Engineering, 14(4): 295-303. doi: 10.1016/j.wse.2021.08.010
Citation: Habib Etemadi, Hamidreza Qazvini, Elham Shokri. 2021: Effect of coagulation treatment on antifouling properties of PVC nanocomposite membrane in a submerged membrane system for water treatment. Water Science and Engineering, 14(4): 295-303. doi: 10.1016/j.wse.2021.08.010

Effect of coagulation treatment on antifouling properties of PVC nanocomposite membrane in a submerged membrane system for water treatment

doi: 10.1016/j.wse.2021.08.010
Funds:

This work was supported by the project funded by University of Bonab, Iran (Grant No. 98/1041).

  • Received Date: 2020-07-13
  • Accepted Date: 2021-07-23
  • Available Online: 2021-12-15
  • A submerged membrane system was used in this work to investigate the effect of the polyaluminum chloride (PAC) coagulant on the antifouling performance of the polyvinyl chloride/alumina (PVC/Al2O3) nanocomposite membrane. The prepared nanocomposite membranes were characterized with field emission scanning electron microscopy (FE-SEM), atomic force microscopy, contact angle, porosity measurement, and pure water flux. The results revealed that the membrane containing Al2O3 nanoparticles (the mass ratio of PVC to Al2O3 was 98.5/1.5) had a higher hydrophilicity, porosity, and pure water flux than other membranes. The FE-SEM images showed that when Al2O3 nanoparticles were present in the PVC membrane, large pores and macrovoids formed on the surface and cross-section of the membrane. The fouling behavior of membranes was investigated through the filtration of humic acid (HA) solution with and without the PAC coagulant. Without PAC addition, the PVC/Al2O3 membrane significantly decreased the irreversible fouling ratio from 60.7% to 19.4% and showed a high HA removal efficiency of approximately 90.5%. The Hermia model confirmed that the cake formation mechanism best described the experimental data for the neat PVC and nanocomposite membranes with the presence and absence of the PAC coagulant. This confirms that the PAC coagulant can significantly mitigate fouling and improve HA removal in the submerged membrane system.

     

  • loading
  • Akbari, A., Yegani, R., Pourabbas, B., Behboudi, A., 2016. Fabrication and study of fouling characteristics of HDPE/PEG grafted silica nanoparticles composite membrane for filtration of humic acid. Chem. Eng. Res. Des. 109, 282-296. https://doi.org/10.1016/j.cherd.2016.01.031.
    Amini, M., Etemadi, H., Akbarzadeh, A., Yegani, R., 2017. Preparation and performance evaluation of high-density polyethylene/silica nanocomposite membranes in membrane bioreactor system. Biochem. Eng. J. 127, 196-205. https://doi.org/10.1016/j.bej.2017.08.015.
    Behboudi, A., Jafarzadeh, Y., Yegani, R., 2017. Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment. J. Membr. Sci. 534, 18-24. https://doi.org/10.1016/j.memsci.2017.04.011.
    Behboudi, A., Jafarzadeh, Y., Yegani, R., 2018. Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles. J. Environ. Chem. Eng. 6, 1764-1773. https://doi.org/10.1016/j.jece.2018.02.031.
    Bowen, W.R., Doneva, T.A., Yin, H.-B., 2002. Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes. J. Membr. Sci. 206, 417-429. https://doi.org/10.1016/S0376-7388(01)00786-4.
    Charfi, A., Amar, N.B., Harmand, J., 2012. Analysis of fouling mechanisms in anaerobic membrane bioreactors. Water Res. 46, 2637-2650. https://doi.org/10.1016/j.watres.2012.02.021.
    Choi, Y.H., Kim, H.S., Kweon, J.H., 2008. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes. Separ. Purif. Technol. 62, 529-534. https://doi.org/10.1016/j.seppur.2008.03.001.
    Cui, A., Liu, Z., Xiao, C., Zhang, Y., 2010. Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS. J. Membr. Sci. 360, 259-264. https://doi.org/10.1016/j.memsci.2010.05.023.
    Dong, M., Gao, B., Xu, W., Wang, Y., Mao, R., 2012. Effect of calcium on floc properties and membrane foulings in coagulationeultrafiltration process by polyaluminum chloride (PACl) of different OH/Al3+ values. Desalination 294, 30-35. https://doi.org/10.1016/j.desal.2012.03.005.
    Etemadi, H., Yegani, R., Babaeipour, V., 2017. Performance evaluation and antifouling analyses of cellulose acetate/nanodiamond nanocomposite membranes in water treatment. J. Appl. Polym. Sci. 134, 44873. https://doi.org/10.1002/app.44873.
    Etemadi, H., Yegani, R., Seyfollahi, M., Rabiee, M., 2018. Synthesis, characterization, and anti-fouling properties of cellulose acetate/polyethylene glycol-grafted nanodiamond nanocomposite membranes for humic acid removal from contaminated water. Iran. Polym. J. (Engl. Ed.) 27, 381-393. https://doi.org/10.1007/s13726-018-0616-7.
    Etemadi, H., Yegani, R., 2019. Effect of aeration rate on the anti-biofouling properties of cellulose acetate nanocomposite membranes in a membrane bioreactor system for the treatment of pharmaceutical wastewater. Biofouling 35, 618-630. https://doi.org/10.1080/08927014.2019.1637858.
    Etemadi, H., Amirjangi, A., Ghasemian, N., Shokri, E., 2020. Synthesis and characterization of polycarbonate/TiO2 ultrafiltration membranes:Critical flux determination. Chem. Eng. Technol. 43, 2247-2258. https://doi.org/10.1002/ceat.202000226.
    Ghazanfari, D., Bastani, D., Mousavi, S.A., 2017. Preparation and characterization of poly (vinyl chloride) (PVC) based membrane for wastewater treatment. J. Water Process Eng. 16, 98-107. https://doi.org/10.1016/j.jwpe.2016.12.001.
    Homayoonfal, M., Mehrnia, M.R., Rahmani, S., Mojtahedi, Y.M., 2015. Fabrication of alumina/polysulfone nanocomposite membranes with biofouling mitigation approach in membrane bioreactors. J. Ind. Eng. Chem. 22, 357-367. https://doi.org/10.1016/j.jiec.2014.07.031.
    Hong, J., He, Y., 2014. Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332, 67-75. https://doi.org/10.1016/j.desal.2013.10.026.
    Huang, J., Zhang, K., Wang, K., Xie, Z., Ladewig, B., Wang, H., 2012. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 423, 362-370. https://doi.org/10.1016/j.memsci.2012.08.029.
    Jafarzadeh, Y., Yegani, R., 2015. Analysis of fouling mechanisms in TiO2 embedded high density polyethylene membranes for collagen separation. Chem. Eng. Res. Des. 93, 684-695. https://doi.org/10.1016/j.cherd.2014.06.001.
    Jalal Sadiq, A., Shabeeb, K.M., Khalil, B.I., Alsalhy, Q.F., 2019. Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment. Chem. Eng. Commun. 207, 733-750. https://doi.org/10.1080/00986445.2019.1618845.
    Jamed, M.J., Alhathal Alanezi, A., Alsalhy, Q.F., 2019. Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly(vinylidene fluoride-co-hexafluoropropylene) membrane distillation performance. Chem. Eng. Commun. 206, 1035-1057. https://doi.org/10.1080/00986445.2018.1542302.
    Jayalakshmi, A., Rajesh, S., Mohan, D., 2012. Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Appl. Surf. Sci. 258, 9770-9781. https://doi.org/10.1016/j.apsusc.2012.06.028.
    Jhaveri, J.H., Patel, C.M., Murthy, Z., 2017. Preparation, characterization and application of GO-TiO2/PVC mixed matrix membranes for improvement in performance. J. Ind. Eng. Chem. 52, 138-146. https://doi.org/10.1016/j.jiec.2017.03.035.
    Li, J.B., Zhu, J.W., Zheng, M.S., 2007. Morphologies and properties of poly(phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles. J. Appl. Polym. Sci. 103, 3623-3629. https://doi.org/10.1002/app.25428.
    Lu, C.-H., Wu, W.-H., Kale, R.B., 2008. Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders. J. Hazard Mater. 154, 649-654. https://doi.org/10.1016/j.jhazmat.2007.10.074.
    Ma, Y., Shi, F., Wang, Z., Wu, M., Ma, J., Gao, C., 2012. Preparation and characterization of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive. Desalination 286, 131-137. https://doi.org/10.1016/j.desal.2011.10.040.
    Rabiee, H., Farahani, M.H.D.A., Vatanpour, V., 2014. Preparation and characterization of emulsion poly(vinyl chloride)(EPVC)/TiO2 nanocomposite ultrafiltration membrane. J. Membr. Sci. 472, 185-193. https://doi.org/10.1016/j.memsci.2014.08.051.
    Rabiee, H., Vatanpour, V., Farahani, M.H.D.A., Zarrabi, H., 2015. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Separ. Purif. Technol. 156, 299-310. https://doi.org/10.1016/j.seppur.2015.10.015.
    Rajaeian, B., Heitz, A., Tade, M.O., Liu, S., 2015. Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J. Membr. Sci. 485, 48-59. https://doi.org/10.1016/j.memsci.2015.03.009.
    Safarpour, M., Khataee, A., Vatanpour, V., 2015. Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Separ. Purif. Technol. 140, 32-42. https://doi.org/10.1016/j.seppur.2014.11.010.
    Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., Astinchap, B., 2012. Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Separ. Purif. Technol. 90, 69-82. https://doi.org/10.1016/j.seppur.2012.02.014.
    Wang, S.-Y., Fang, L.-F., Cheng, L., Jeon, S., Kato, N., Matsuyama, H., 2018. Novel ultrafiltration membranes with excellent antifouling properties and chlorine resistance using a poly(vinyl chloride)-based copolymer. J. Membr. Sci. 549, 101-110. https://doi.org/10.1016/j.memsci.2017.11.074.
    Wu, T., Zhou, B., Zhu, T., Shi, J., Xu, Z., Hu, C., Wang, J., 2015. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 5, 7880-7889. https://doi.org/10.1039/C4RA13476A.
    Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., Zhou, B., Qian, X., 2014. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci. 458, 1-13. https://doi.org/10.1016/j.memsci.2014.01.050.
    Yi, Z., Zhu, L.-P., Xu, Y.-Y., Zhao, Y.-F., Ma, X.-T., Zhu, B.-K., 2010. Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes. J. Membr. Sci. 365, 25-33. https://doi.org/10.1016/j.memsci.2010.08.001.
    Yuliwati, E., Ismail, A., Matsuura, T., Kassim, M., Abdullah, M., 2011. Effect of modified PVDF hollow fiber submerged ultrafiltration membrane for refinery wastewater treatment. Desalination 283, 214-220. https://doi.org/10.1016/j.desal.2011.03.049.
    Zhang, G., Lu, S., Zhang, L., Meng, Q., Shen, C., Zhang, J., 2013. Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J. Membr. Sci. 436, 163-173. https://doi.org/10.1016/j.memsci.2013.02.009.
    Zhang, M., Field, R.W., Zhang, K., 2014. Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J. Membr. Sci. 471, 274-284. https://doi.org/10.1016/j.memsci.2014.08.021.
    Zhang, W., Zhang, X., Li, Y., Wang, J., Chen, C., 2011. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal. J. Environ. Sci. 23, 1970-1976. https://doi.org/10.1016/S1001-0742(10)60622-5.
    Zhang, W., Liang, W., Huang, G., Wei, J., Ding, L., Jaffrin, M.Y., 2015. Studies of membrane fouling mechanisms involved in the micellarenhanced ultrafiltration using blocking models. RSC Adv. 5, 48484-48491. https://doi.org/10.1039/C5RA06063J.
    Zhao, S., Wang, P., Wang, C., Sun, X., Zhang, L., 2012. Thermostable PPESK/TiO2 nanocomposite ultrafiltration membrane for high temperature condensed water treatment. Desalination 299, 35-43. https://doi.org/10.1016/j.desal.2012.05.013.
    Zhao, Y., Lu, J., Liu, X., Wang, Y., Lin, J., Peng, N., Li, J., Zhao, F., 2016. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. J. Colloid Interface Sci. 480, 1-8. https://doi.org/10.1016/j.jcis.2016.06.075.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (153) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return