Citation: | Chao Zhuang, Long Yan, Zhi-fang Zhou, Jin-guo Wang, Zhi Dou. 2021: Estimation of aquitard hydraulic conductivity and skeletal specific storage considering non-Darcy flow. Water Science and Engineering, 14(4): 269-276. doi: 10.1016/j.wse.2021.09.003 |
Back, W., 1986. Role of aquitards in hydrogeochemical systems:A synopsis. Appl. Geochem. 1(3), 427-437. https://doi.org/10.1016/0883-2927(86) 90027-2.
|
Cherry, J.A., Parker, B.L., Bradbury, K.R., Eaton, T.T., Gotkowitz, M.G., Hart, D.J., Borchardt, M.A., 2006. Contaminant Transport through Aquitards:A "State of the Science" Review. AWWA Research Foundation, Denver.
|
Dubin, B., Moulin, G., 1986. Influence of a Critical Gradient on the Consolidation of Clays. Astm Special Technical Publication 892, pp. 354-377. https://doi.org/10.1520/STP34623S.
|
Filippini, M., Parker, B.L., Dinelli, E., Wanner, P., Chapman, S.W., Gargini, A., 2020. Assessing aquitard integrity in a complex aquifereaquitard system contaminated by chlorinated hydrocarbons. Water Res. 171, 115388. https://doi.org/10.1016/j.watres.2019.115388.
|
Hansbo, S., 1960. Consolidation of Clay, with Special Reference to Influence of Vertical Drains:A Study Made in Connection with Full-Scale Investigations at SkaÊ-Edeby. Ph. D. Dissertation. Chalmers University of Technology, Gothenburg.
|
Hansbo, S., 1997. Aspects of vertical drain design:Darcian or non-Darcian flow. Geotechnique 47(5), 983-992. https://doi.org/10.1680/geot.1997.47.5.983.
|
Helm, D.C., 1975. One-dimensional simulation of aquifer system compaction near pixley, California:1. Constant parameters. Water Resour. Res. 11(3), 465-478. https://doi.org/10.1029/wr011i003p00465.
|
Huang, Y.C., Yeh, H.D., 2007. The use of sensitivity analysis in on-line aquifer parameter estimation. J. Hydrol. 335(3), 406-418. https://doi.org/10.1016/j.jhydrol.2006.12.007.
|
Konikow, L.F., Kendy, E., 2005. Groundwater depletion:A global problem. Hydrogeol. J. 13(1), 317-320. https://doi.org/10.1007/s10040-004-0411-8.
|
Konikow, L.F., Neuzil, C.E., 2007. A method to estimate groundwater depletion from confining layers. Water Resour. Res. 43, W07417. https://doi.org/10.1029/2006wr005597.
|
Kuang, X., Jiao, J.J., Zheng, C., Cherry, J.A., Li, H., 2020. A review of specific storage in aquifers. J. Hydrol. 581, 124383. https://doi.org/10.1016/j.jhydrol.2019.124383.
|
Li, C.X., Xie, K.H., 2013. One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow. J. Zhejiang Univ.-Sci. A 14(6), 435-446. https://doi.org/10.1631/jzus.A1200343.
|
Li, J., Xia, X.H., Li, M.G., Chen, J.J., Zhan, H., 2020. Nonlinear drainage model of viscoelastic aquitards considering non-Darcian flow. J. Hydrol. 587, 124988. https://doi.org/10.1016/j.jhydrol.2020.124988.
|
Li, Z., Zhou, Z., 2015. An analytical solution for leakage rate and depletion of aquitard. Environ. Earth Sci. 74(2), 1227-1234. https://doi.org/10.1007/s12665-015-4114-3.
|
Li, Z., Zhou, Z., Dai, Y., Dai, B., 2019. Contaminant transport in a largelydeformed aquitard affected by delayed drainage. J. Contam. Hydrol. 221, 118-126. https://doi.org/10.1016/j.jconhyd.2019.02.002.
|
Liu, Y., Helm, D.C., 2008a. Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal:1. Methods. Water Resour. Res. 44(7), W07423. https://doi.org/10.1029/2007WR006605.
|
Liu, Y., Helm, D.C., 2008b. Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal:2. Field application. Water Resour. Res. 44(7), W0724. https://doi.org/10.1029/2007WR006606.
|
Liu, K., Wen, Z., Liang, X., Pan, H., Liu, J., 2013. One-dimensional column test for non-Darcy flow in low permeability media. Chinese J. Hydrodynamics (Ser. A) 28(1), 81-87 (in Chinese). https://doi.org/10.3969/j.issn1000-4874.2013.01.012.
|
Liu, Z.Y., Yue, J.C., Sun, L.Y., 2010. One-dimensional consolidation of aquitard considering non-Darcy Flow. In:Proceeding of the International Symposium on Geoenvironmental Engineering, vols. 430-434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04460-1_33.
|
Luo, Y., Ye, S., Wu, J., Wang, H., Jiao, X., 2016. A modified inverse procedure for calibrating parameters in a land subsidence model and its field application in Shanghai, China. Hydrogeol. J. 24(3), 711-725. https://doi.org/10.1007/s10040-016-1381-3.
|
Neuzil, C.E., 2015. Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations. Geophys. Res. Lett. 42(12), 4801-4808. https://doi.org/10.1002/2015gl064140.
|
Silfverberg, L., 1949. Report on the Activities at the Swedish Geotechnical Institute during the Years 1944-1948. Swedish Geotechnical Institute, Stockholm.
|
Singh, S.K., 2009. Simple model for analyzing transient pumping from two aquifers without cross flow. J. Irrigat. Drain. Eng. 135, 102-107. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:1(102).
|
Slepicka, F., 1960. Contribution to the Solution of the Filtration Law. International Union of Geodesy and Geophysics Commission of Subterranean Waters, Helsink.
|
Terzaghi, K., 1925. Settlement and consolidation of clay. Eng. News Rec. 95(3), 874-878.
|
Wang, S., Zhu, W., Qian, X., Xu, H., Fan, X., 2017. Temperature effects on non-Darcy flow of compacted clay. Appl. Clay Sci. 135, 512-525. https://doi.org/10.1016/j.clay.2016.09.025.
|
Wang, S., Zhu, W., Fei, K., He, H.P., Fu, G.F., Shu, S., Song, J., 2019. COD (glucose configuration) effects on the non-Darcy flow of compacted clay in a municipal solid waste landfill. Waste Manag. 84, 220-226. https://doi.org/10.1016/j.wasman.2018.12.004.
|
Yan, X.P., Kerrich, R., Hendry, M.J., 2001. Distribution of the rare earth elements in porewaters from a clay-rich aquitard sequence, Saskatchewan, Canada. Chem. Geol. 176(1), 151-172. https://doi.org/10.1016/S0009-2541(00)00395-8.
|
Zapata-Norberto, B., Morales-Casique, E., Herrera, G.S., 2018. Nonlinear consolidation in randomly heterogeneous highly compressible aquitards. Hydrogeol. J. 26(3), 755-769. https://doi.org/10.1007/s10040-017-1698-6.
|
Zhang, Z.H., Xu, Z.G., Du, X.L., Li, H.Y., 2013. Impact of consolidation pressure on contaminant migration in clay liner. Water Sci. Eng. 6(3), 340-353. https://doi.org/10.3882/j.issn.1674-2370.2013.03.010.
|
Zhou, Z., Guo, Q., Dou, Z., 2013. Delayed drainage of aquitard in response to sudden change in groundwater level in adjacent confined aquifer:Analytical and experimental studies. Chin. Sci. Bull. 58(25), 3060-3069. https://doi.org/10.1007/s11434-013-5730-5.
|
Zhuang, C., Zhou, Z., Zhan, H., Wang, G., 2015. A new type curve method for estimating aquitard hydraulic parameters in a multi-layered aquifer system. J. Hydrol. 527, 212-220. https://doi.org/10.1016/j.jhydrol.2015.04.062.
|
Zhuang, C., Zhou, Z., Illman, W.A., 2017a. A joint analytic method for estimating aquitard hydraulic parameters. Groundwater 55(4), 565-576. https://doi.org/10.1111/gwat.12494.
|
Zhuang, C., Zhou, Z., Illman, W.A., Guo, Q., Wang, J., 2017b. Estimating hydraulic parameters of a heterogeneous aquitard using long-term multiextensometer and groundwater level data. Hydrogeol. J. 25(6), 1721-1732. https://doi.org/10.1007/s10040-017-1596-y.
|
Zhuang, C., Zhou, Z., Illman, W.A., Wang, J., 2019. Geostatistical inverse modeling for the characterization of aquitard heterogeneity using longterm multi-extensometer data. J. Hydrol. 578, 124024. https://doi.org/10.1016/j.jhydrol.2019.124024.
|
Zhuang, C., Zhou, Z., Illman, W.A., Dou, Z., Wang, J., 2020. Parameter estimation of an overconsolidated aquitard subjected to periodic hydraulic head variations within adjacent aquifers. J. Hydrol. 583, 124555. https://doi.org/10.1016/j.jhydrol.2020.124555.
|