Volume 14 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Chao Zhuang, Long Yan, Zhi-fang Zhou, Jin-guo Wang, Zhi Dou. 2021: Estimation of aquitard hydraulic conductivity and skeletal specific storage considering non-Darcy flow. Water Science and Engineering, 14(4): 269-276. doi: 10.1016/j.wse.2021.09.003
Citation: Chao Zhuang, Long Yan, Zhi-fang Zhou, Jin-guo Wang, Zhi Dou. 2021: Estimation of aquitard hydraulic conductivity and skeletal specific storage considering non-Darcy flow. Water Science and Engineering, 14(4): 269-276. doi: 10.1016/j.wse.2021.09.003

Estimation of aquitard hydraulic conductivity and skeletal specific storage considering non-Darcy flow

doi: 10.1016/j.wse.2021.09.003
Funds:

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFC1804301), the National Natural Science Foundation of China (Grant No. 41902244), the Fundamental Research Funds for the Central Universities (Grant No. B200202018), the Basic Research Program (Natural Science Foundation) of Jiangsu Province (Grant No. BK20190497), and the China Postdoctoral Science Foundation (Grant No. 2021M690866).

  • Received Date: 2020-10-30
  • Accepted Date: 2021-06-08
  • Available Online: 2021-12-15
  • Darcy's law has been widely used to study the groundwater drainage process within an aquitard. However, non-Darcy flow is frequently encountered in laboratory and in situ investigations. With consideration of a sudden drop in boundary hydraulic heads, aquitard compaction characteristics and their sensitivities to the non-Darcy flow control variables were analyzed. The non-Darcy flow was found to retard groundwater drainage, and the retardation effects were much more significant at early-to-intermediate time points. Under this specific boundary condition, the time-compaction curve in a log-log graph at early time points was found to be close to a straight line, whose slope can be used to indirectly evaluate the extent of the non-Darcy effect. A non-Darcy flow-based type curve method was developed for estimating aquitard hydraulic conductivity (K) and skeletal specific storage (Ss), and this method was used to interpret the time-compaction data recorded in a laboratory experiment. The tested aquitard was determined to be associated with non-Darcy flow due to the fact that the time-compaction curve deviated from the Darcy's law-based theoretical curve. Darcy's law resulted in an underestimated K. In contrast, the estimated Ss was almost unaffected by the flow state, if the observation lasted long enough to reach final steady compaction.

     

  • loading
  • Back, W., 1986. Role of aquitards in hydrogeochemical systems:A synopsis. Appl. Geochem. 1(3), 427-437. https://doi.org/10.1016/0883-2927(86) 90027-2.
    Cherry, J.A., Parker, B.L., Bradbury, K.R., Eaton, T.T., Gotkowitz, M.G., Hart, D.J., Borchardt, M.A., 2006. Contaminant Transport through Aquitards:A "State of the Science" Review. AWWA Research Foundation, Denver.
    Dubin, B., Moulin, G., 1986. Influence of a Critical Gradient on the Consolidation of Clays. Astm Special Technical Publication 892, pp. 354-377. https://doi.org/10.1520/STP34623S.
    Filippini, M., Parker, B.L., Dinelli, E., Wanner, P., Chapman, S.W., Gargini, A., 2020. Assessing aquitard integrity in a complex aquifereaquitard system contaminated by chlorinated hydrocarbons. Water Res. 171, 115388. https://doi.org/10.1016/j.watres.2019.115388.
    Hansbo, S., 1960. Consolidation of Clay, with Special Reference to Influence of Vertical Drains:A Study Made in Connection with Full-Scale Investigations at SkaÊ-Edeby. Ph. D. Dissertation. Chalmers University of Technology, Gothenburg.
    Hansbo, S., 1997. Aspects of vertical drain design:Darcian or non-Darcian flow. Geotechnique 47(5), 983-992. https://doi.org/10.1680/geot.1997.47.5.983.
    Helm, D.C., 1975. One-dimensional simulation of aquifer system compaction near pixley, California:1. Constant parameters. Water Resour. Res. 11(3), 465-478. https://doi.org/10.1029/wr011i003p00465.
    Huang, Y.C., Yeh, H.D., 2007. The use of sensitivity analysis in on-line aquifer parameter estimation. J. Hydrol. 335(3), 406-418. https://doi.org/10.1016/j.jhydrol.2006.12.007.
    Konikow, L.F., Kendy, E., 2005. Groundwater depletion:A global problem. Hydrogeol. J. 13(1), 317-320. https://doi.org/10.1007/s10040-004-0411-8.
    Konikow, L.F., Neuzil, C.E., 2007. A method to estimate groundwater depletion from confining layers. Water Resour. Res. 43, W07417. https://doi.org/10.1029/2006wr005597.
    Kuang, X., Jiao, J.J., Zheng, C., Cherry, J.A., Li, H., 2020. A review of specific storage in aquifers. J. Hydrol. 581, 124383. https://doi.org/10.1016/j.jhydrol.2019.124383.
    Li, C.X., Xie, K.H., 2013. One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow. J. Zhejiang Univ.-Sci. A 14(6), 435-446. https://doi.org/10.1631/jzus.A1200343.
    Li, J., Xia, X.H., Li, M.G., Chen, J.J., Zhan, H., 2020. Nonlinear drainage model of viscoelastic aquitards considering non-Darcian flow. J. Hydrol. 587, 124988. https://doi.org/10.1016/j.jhydrol.2020.124988.
    Li, Z., Zhou, Z., 2015. An analytical solution for leakage rate and depletion of aquitard. Environ. Earth Sci. 74(2), 1227-1234. https://doi.org/10.1007/s12665-015-4114-3.
    Li, Z., Zhou, Z., Dai, Y., Dai, B., 2019. Contaminant transport in a largelydeformed aquitard affected by delayed drainage. J. Contam. Hydrol. 221, 118-126. https://doi.org/10.1016/j.jconhyd.2019.02.002.
    Liu, Y., Helm, D.C., 2008a. Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal:1. Methods. Water Resour. Res. 44(7), W07423. https://doi.org/10.1029/2007WR006605.
    Liu, Y., Helm, D.C., 2008b. Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal:2. Field application. Water Resour. Res. 44(7), W0724. https://doi.org/10.1029/2007WR006606.
    Liu, K., Wen, Z., Liang, X., Pan, H., Liu, J., 2013. One-dimensional column test for non-Darcy flow in low permeability media. Chinese J. Hydrodynamics (Ser. A) 28(1), 81-87 (in Chinese). https://doi.org/10.3969/j.issn1000-4874.2013.01.012.
    Liu, Z.Y., Yue, J.C., Sun, L.Y., 2010. One-dimensional consolidation of aquitard considering non-Darcy Flow. In:Proceeding of the International Symposium on Geoenvironmental Engineering, vols. 430-434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04460-1_33.
    Luo, Y., Ye, S., Wu, J., Wang, H., Jiao, X., 2016. A modified inverse procedure for calibrating parameters in a land subsidence model and its field application in Shanghai, China. Hydrogeol. J. 24(3), 711-725. https://doi.org/10.1007/s10040-016-1381-3.
    Neuzil, C.E., 2015. Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations. Geophys. Res. Lett. 42(12), 4801-4808. https://doi.org/10.1002/2015gl064140.
    Silfverberg, L., 1949. Report on the Activities at the Swedish Geotechnical Institute during the Years 1944-1948. Swedish Geotechnical Institute, Stockholm.
    Singh, S.K., 2009. Simple model for analyzing transient pumping from two aquifers without cross flow. J. Irrigat. Drain. Eng. 135, 102-107. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:1(102).
    Slepicka, F., 1960. Contribution to the Solution of the Filtration Law. International Union of Geodesy and Geophysics Commission of Subterranean Waters, Helsink.
    Terzaghi, K., 1925. Settlement and consolidation of clay. Eng. News Rec. 95(3), 874-878.
    Wang, S., Zhu, W., Qian, X., Xu, H., Fan, X., 2017. Temperature effects on non-Darcy flow of compacted clay. Appl. Clay Sci. 135, 512-525. https://doi.org/10.1016/j.clay.2016.09.025.
    Wang, S., Zhu, W., Fei, K., He, H.P., Fu, G.F., Shu, S., Song, J., 2019. COD (glucose configuration) effects on the non-Darcy flow of compacted clay in a municipal solid waste landfill. Waste Manag. 84, 220-226. https://doi.org/10.1016/j.wasman.2018.12.004.
    Yan, X.P., Kerrich, R., Hendry, M.J., 2001. Distribution of the rare earth elements in porewaters from a clay-rich aquitard sequence, Saskatchewan, Canada. Chem. Geol. 176(1), 151-172. https://doi.org/10.1016/S0009-2541(00)00395-8.
    Zapata-Norberto, B., Morales-Casique, E., Herrera, G.S., 2018. Nonlinear consolidation in randomly heterogeneous highly compressible aquitards. Hydrogeol. J. 26(3), 755-769. https://doi.org/10.1007/s10040-017-1698-6.
    Zhang, Z.H., Xu, Z.G., Du, X.L., Li, H.Y., 2013. Impact of consolidation pressure on contaminant migration in clay liner. Water Sci. Eng. 6(3), 340-353. https://doi.org/10.3882/j.issn.1674-2370.2013.03.010.
    Zhou, Z., Guo, Q., Dou, Z., 2013. Delayed drainage of aquitard in response to sudden change in groundwater level in adjacent confined aquifer:Analytical and experimental studies. Chin. Sci. Bull. 58(25), 3060-3069. https://doi.org/10.1007/s11434-013-5730-5.
    Zhuang, C., Zhou, Z., Zhan, H., Wang, G., 2015. A new type curve method for estimating aquitard hydraulic parameters in a multi-layered aquifer system. J. Hydrol. 527, 212-220. https://doi.org/10.1016/j.jhydrol.2015.04.062.
    Zhuang, C., Zhou, Z., Illman, W.A., 2017a. A joint analytic method for estimating aquitard hydraulic parameters. Groundwater 55(4), 565-576. https://doi.org/10.1111/gwat.12494.
    Zhuang, C., Zhou, Z., Illman, W.A., Guo, Q., Wang, J., 2017b. Estimating hydraulic parameters of a heterogeneous aquitard using long-term multiextensometer and groundwater level data. Hydrogeol. J. 25(6), 1721-1732. https://doi.org/10.1007/s10040-017-1596-y.
    Zhuang, C., Zhou, Z., Illman, W.A., Wang, J., 2019. Geostatistical inverse modeling for the characterization of aquitard heterogeneity using longterm multi-extensometer data. J. Hydrol. 578, 124024. https://doi.org/10.1016/j.jhydrol.2019.124024.
    Zhuang, C., Zhou, Z., Illman, W.A., Dou, Z., Wang, J., 2020. Parameter estimation of an overconsolidated aquitard subjected to periodic hydraulic head variations within adjacent aquifers. J. Hydrol. 583, 124555. https://doi.org/10.1016/j.jhydrol.2020.124555.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (408) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return